已知函數(shù)f(x)=a-是偶函數(shù),a為實(shí)常數(shù).
(1)求b的值.
(2)當(dāng)a=1時(shí),是否存在n>m>0,使得函數(shù)y=f(x)在區(qū)間[m,n]上的函數(shù)值組成的集合也是[m,n],若存在,求出m,n的值,否則,說(shuō)明理由.
(1) b=0   (2) 不存在,理由見(jiàn)解析
(1)由已知,可得f(x)=a-的定義域?yàn)镈=(-∞,)∪(,+∞).
又y=f(x)是偶函數(shù),故定義域D關(guān)于原點(diǎn)對(duì)稱(chēng).
于是,b=0(否則,當(dāng)b≠0時(shí),有-∈D且D,即D必不關(guān)于原點(diǎn)對(duì)稱(chēng)).
又對(duì)任意x∈D,有f(x)=f(-x),可得b=0
因此所求實(shí)數(shù)b=0.
(2)由(1),可知f(x)=a-(D=(-∞,0)∪(0,+∞)).
考察函數(shù)f(x)=a-的圖象,可知:f(x)在區(qū)間(0,+∞)上是增函數(shù),
又n>m>0,
∴y=f(x)在區(qū)間[m,n]上是增函數(shù).
因y=f(x)在區(qū)間[m,n]上的函數(shù)值組成的集合也是[m,n].
∴有
即方程1-=x,也就是2x2-2x+1=0有兩個(gè)不相等的正根.
∵Δ=4-8<0,∴此方程無(wú)解.
故不存在正實(shí)數(shù)m,n滿(mǎn)足題意.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

二次函數(shù)的圖象經(jīng)過(guò)三點(diǎn)A(,),B(-1,3),C(2,3),則這個(gè)二次函數(shù)的解析式為_(kāi)_________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

某電信公司推出兩種手機(jī)收費(fèi)方式:A種方式是月租20元,B種方式是月租0元.一個(gè)月的本地網(wǎng)內(nèi)打出電話(huà)時(shí)間t(分鐘)與打出電話(huà)費(fèi)s(元)的函數(shù)關(guān)系如圖,當(dāng)打出電話(huà)150分鐘時(shí),這兩種方式電話(huà)費(fèi)相差(  )
A.10元B.20元C.30元D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

函數(shù)的一個(gè)零點(diǎn)是,則另一個(gè)零點(diǎn)是_________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

設(shè)f(x)是定義在R上的偶函數(shù),且當(dāng)x≥0時(shí),f(x)=2x.若對(duì)任意的x∈[a,a+2],不等式f(x+a)≥f2(x)恒成立,則實(shí)數(shù)a的取值范圍是________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

若f(x)是奇函數(shù),且x0是y=f(x)+ex的一個(gè)零點(diǎn),則-x0一定是下列哪個(gè)函數(shù)的零點(diǎn)(  )
A.y=f(-x)ex-1 B.y=f(x)e-x+1
C.y=exf(x)-1 D.y=exf(x)+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

若函數(shù)f(x)=a-是定義在(-∞,-1]∪[1,+∞)上的奇函數(shù),則f(x)的值域?yàn)開(kāi)_______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

.若直線(xiàn)與曲線(xiàn)恰有一個(gè)公共點(diǎn),則實(shí)數(shù)的取值范圍為       

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知?jiǎng)狱c(diǎn)P(x,y),若lgy,lg|x|,lg成等差數(shù)列,則點(diǎn)P的軌跡圖象是(  )

查看答案和解析>>

同步練習(xí)冊(cè)答案