【題目】如圖,四邊形ABCD為平行四邊形,點(diǎn)EAB上,AE2EB2,且DEAB.DE為折痕把△ADE折起,使點(diǎn)A到達(dá)點(diǎn)F的位置,且∠FEB60°.

1)求證:平面BFC⊥平面BCDE;

2)若直線DF與平面BCDE所成角的正切值為,求二面角EDFC的正弦值.

【答案】1)證明見解析(2

【解析】

1)首先通過證明平面證得.結(jié)合余弦定理和勾股定理證得,由此證得平面,進(jìn)而證得平面平面.

2)建立空間直角坐標(biāo)系,由直線與平面所成角的正切值求得正弦值,結(jié)合直線的方向向量和平面的法向量列方程,解方程求得的長.由此通過平面和平面的法向量,計(jì)算出二面角的余弦值,進(jìn)而求得其正弦值.

1)證明:∵DEAB,∴DEEB,DEEF,

DE⊥平面BEF,∴DEBF

AE2EB2,∴EF2,EB1,

∵∠FEB60°,∴由余弦定理得BF,

EF2EB2+BF2,∴FBEB,

由①②得BF⊥平面BCDE,

∴平面BFC⊥平面BCDE.

2)解:以B為原點(diǎn),BAx軸,在平面ABCD中過點(diǎn)BAB的垂線為y軸,BFz軸,建立空間直角坐標(biāo)系,

設(shè)DEa,則D1,a0),F00,),(﹣1,﹣a,),

∵直線DF與平面BCDE所成角的正切值為

∴直線DF與平面BCDE所成角的正弦值為,

平面BCDE的法向量00,1),

|cos|,解得a2

D1,20),C(﹣2,20),∴0,2,0),(﹣1,﹣2),

設(shè)平面EDF的法向量xy,z),

,取z1,得),

同理得平面DFC的一個(gè)法向量0,2),

cos,

∴二面角EDFC的正弦值為sin.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了解運(yùn)動(dòng)健身減肥的效果,某健身房調(diào)查了20名肥胖者,健身之前他們的體重情況如三維餅圖(1)所示,經(jīng)過四個(gè)月的健身后,他們的體重情況如三維餅圖(2)所示.對比健身前后,關(guān)于這20名肥胖者,下面結(jié)論不正確的是(

A.他們健身后,體重在區(qū)間[90kg,100kg)內(nèi)的人數(shù)不變

B.他們健身后,體重在區(qū)間[100kg,110kg)內(nèi)的人數(shù)減少了4

C.他們健身后,這20位健身者體重的中位數(shù)位于[90kg100kg

D.他們健身后,原來體重在[110kg,120kg]內(nèi)的肥胖者體重都至少減輕了10kg

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在國家“大眾創(chuàng)業(yè),萬眾創(chuàng)新”戰(zhàn)略下,某企業(yè)決定加大對某種產(chǎn)品的研發(fā)投入.為了對新研發(fā)的產(chǎn)品進(jìn)行合理定價(jià),將該產(chǎn)品按事先擬定的價(jià)格試銷,得到一組檢測數(shù)據(jù)如表所示:

試銷價(jià)格(元)

產(chǎn)品銷量 (件)

已知變量且有線性負(fù)相關(guān)關(guān)系,現(xiàn)有甲、乙、丙三位同學(xué)通過計(jì)算求得回歸直線方程分別為:甲; 乙;丙,其中有且僅有一位同學(xué)的計(jì)算結(jié)果是正確的.

1)試判斷誰的計(jì)算結(jié)果正確?

2)若由線性回歸方程得到的估計(jì)數(shù)據(jù)與檢測數(shù)據(jù)的誤差不超過,則稱該檢測數(shù)據(jù)是“理想數(shù)據(jù)”,現(xiàn)從檢測數(shù)據(jù)中隨機(jī)抽取個(gè),求“理想數(shù)據(jù)”的個(gè)數(shù)為的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】據(jù)歷年大學(xué)生就業(yè)統(tǒng)計(jì)資料顯示:某大學(xué)理工學(xué)院學(xué)生的就業(yè)去向涉及公務(wù)員、教師、金融、商貿(mào)、公司和自主創(chuàng)業(yè)等六大行業(yè).2020屆該學(xué)院有數(shù)學(xué)與應(yīng)用數(shù)學(xué)、計(jì)算機(jī)科學(xué)與技術(shù)和金融工程等三個(gè)本科專業(yè),畢業(yè)生人數(shù)分別是70人,140人和210.現(xiàn)采用分層抽樣的方法,從該學(xué)院畢業(yè)生中抽取18人調(diào)查學(xué)生的就業(yè)意向.

1)應(yīng)從該學(xué)院三個(gè)專業(yè)的畢業(yè)生中分別抽取多少人?

2)國家鼓勵(lì)大學(xué)生自主創(chuàng)業(yè),在抽取的18人中,含有“自主創(chuàng)業(yè)”就業(yè)意向的有6人,且就業(yè)意向至少有三個(gè)行業(yè)的學(xué)生有7.為方便統(tǒng)計(jì),將至少有三個(gè)行業(yè)就業(yè)意向的這7名學(xué)生分別記為,,,,,,統(tǒng)計(jì)如下表:

其中“○”表示有該行業(yè)就業(yè)意向,“×”表示無該行業(yè)就業(yè)意向.

①試估計(jì)該學(xué)院2020屆畢業(yè)生中有自主創(chuàng)業(yè)意向的學(xué)生人數(shù);

②現(xiàn)從,,,,,7人中隨機(jī)抽取2人接受采訪.設(shè)為事件“抽取的2人中至少有一人有自主創(chuàng)業(yè)意向”,求事件發(fā)生的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱柱中,平面,四邊形為平行四邊形,,

1)若,求證:平面;

2)若,,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某濕地公園內(nèi)有一條河,現(xiàn)打算建一座橋?qū)⒑觾砂兜穆愤B接起來,剖面設(shè)計(jì)圖紙如下:

其中,點(diǎn)軸上關(guān)于原點(diǎn)對稱的兩點(diǎn),曲線段是橋的主體,為橋頂,且曲線段在圖紙上的圖形對應(yīng)函數(shù)的解析式為,曲線段均為開口向上的拋物線段,且分別為兩拋物線的頂點(diǎn),設(shè)計(jì)時(shí)要求:保持兩曲線在各銜接處()的切線的斜率相等.

(1)求曲線段在圖紙上對應(yīng)函數(shù)的解析式,并寫出定義域;

(2)車輛從經(jīng)爬坡,定義車輛上橋過程中某點(diǎn)所需要的爬坡能力為:(該點(diǎn)與橋頂間的水平距離)(設(shè)計(jì)圖紙上該點(diǎn)處的切線的斜率),其中的單位:米.若該景區(qū)可提供三種類型的觀光車:游客踏乘;蓄電池動(dòng)力;內(nèi)燃機(jī)動(dòng)力.它們的爬坡能力分別為米,米,米,又已知圖紙上一個(gè)單位長度表示實(shí)際長度米,試問三種類型的觀光車是否都可以順利過橋?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列中,,前n項(xiàng)和為,且.

1)求

2)證明數(shù)列為等差數(shù)列,并寫出其通項(xiàng)公式;

3)設(shè),試問是否存在正整數(shù)p,q(其中),使成等比數(shù)列?若存在,求出所有滿足條件的數(shù)組(p,q);若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】記無窮數(shù)列的前項(xiàng)中最大值為,最小值為,令,則稱“極差數(shù)列”.

1)若,求的前項(xiàng)和;

2)證明:的“極差數(shù)列”仍是;

3)求證:若數(shù)列是等差數(shù)列,則數(shù)列也是等差數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某搜索引擎廣告按照付費(fèi)價(jià)格對搜索結(jié)果進(jìn)行排名,點(diǎn)擊一次付費(fèi)價(jià)格排名越靠前,被點(diǎn)擊的次數(shù)也可能會(huì)提高,已知某關(guān)鍵詞被甲、乙等多個(gè)公司競爭,其中甲、乙付費(fèi)情況與每小時(shí)點(diǎn)擊量結(jié)果繪制成如下的折線圖.

1)若甲公司計(jì)劃從這10次競價(jià)中隨機(jī)抽取3次競價(jià)進(jìn)行調(diào)研,其中每小時(shí)點(diǎn)擊次數(shù)超過7次的競價(jià)抽取次數(shù)記為,求的分布列與數(shù)學(xué)期望;

2)若把乙公司設(shè)置的每次點(diǎn)擊價(jià)格為x,每小時(shí)點(diǎn)擊次數(shù)為,則點(diǎn)近似在一條直線附近.試根據(jù)前5次價(jià)格與每小時(shí)點(diǎn)擊次數(shù)的關(guān)系,求y關(guān)于x的回歸直線.(附:回歸方程系數(shù)公式:.

查看答案和解析>>

同步練習(xí)冊答案