【題目】橢圓 的經(jīng)過中心的弦稱為橢圓的一條直徑,平行于該直徑的所有弦的中點(diǎn)的軌跡為一條線段,稱為該直徑的共軛直徑,已知橢圓的方程為 .

(1)若一條直徑的斜率為 ,求該直徑的共軛直徑所在的直線方程;
(2)若橢圓的兩條共軛直徑為 ,它們的斜率分別為 ,證明:四邊形 的面積為定值.

【答案】
(1)解:設(shè)斜率為 的與直徑平行的弦的端點(diǎn)坐標(biāo)分別為 , ,
該弦中點(diǎn)為 ,則有 , ,
相減得: ,
由于 , ,且 ,所以得: ,
故該直徑的共軛直徑所在的直線方程為
(2)解:橢圓的兩條共軛直徑為 ,它們的斜率分別為 ,
四邊形 顯然為平行四邊形,設(shè)與 平行的弦的端點(diǎn)坐標(biāo)分別為
, ,而 ,
,故 ,
的坐標(biāo)分別為 ,
,同理 的坐標(biāo)分別為 ,
設(shè)點(diǎn) 到直線 的距離為 ,四邊形 的面積為 ,
所以,
,為定值
【解析】(1)考查中點(diǎn)弦問題 ,利用點(diǎn)差法求出直線方程 。
(2)設(shè)出直線方程,求出弦長,再求出點(diǎn) C 到直線 A B 的距離為 d,求四邊形 A C B D 的面積為 S 。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某同學(xué)用“五點(diǎn)法”畫函數(shù)在某一個周期內(nèi)的圖像時,列表并填入了部分?jǐn)?shù)據(jù),如下表:

(I)請將上表數(shù)據(jù)補(bǔ)充完整,并直接寫出函數(shù)的解析式

(II)將的圖像上所有點(diǎn)向左平行移動個單位長度,得到的圖像,求的圖像離軸最近的對稱中心.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】今年冬天流感盛行,據(jù)醫(yī)務(wù)室統(tǒng)計,北校近30天每天因病請假人數(shù)依次構(gòu)成數(shù)列 ,已知 , ,且 ,則這30天因病請假的人數(shù)共有人.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列 滿足:,,;數(shù)列 滿足:

(1)求數(shù)列 的通項(xiàng)公式;

(2)證明:數(shù)列 中的任意三項(xiàng)不可能成等差數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在三棱錐 中,平面 平面 , 分別為 的中點(diǎn).

(1)求證: 平面 ;
(2)求證:平面 平面 .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,B,AB=8,點(diǎn)DBC邊上,且CD=2,cos∠ADC.

(1)sin ∠BAD;

(2)BD,AC的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)
(1)求函數(shù) 的最大值;
(2)對于任意 ,且 ,是否存在實(shí)數(shù) ,使 恒成立,若存在求出 的范圍,若不存在,說明理由;
(3)若正項(xiàng)數(shù)列 滿足 ,且數(shù)列 的前 項(xiàng)和為 ,試判斷 的大小,并加以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知 函數(shù) 在區(qū)間 上有1個零點(diǎn); 函數(shù) 圖象與 軸交于不同的兩點(diǎn).若“ ”是假命題,“ ”是真命題,求實(shí)數(shù) 的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知由實(shí)數(shù)組成的等比數(shù)列{an}的前項(xiàng)和為Sn , 且滿足8a4=a7 , S7=254.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)對n∈N* , bn= ,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

同步練習(xí)冊答案