【題目】函數(shù)
(1)求函數(shù) 的最大值;
(2)對于任意 ,且 ,是否存在實數(shù) ,使 恒成立,若存在求出 的范圍,若不存在,說明理由;
(3)若正項數(shù)列 滿足 ,且數(shù)列 的前 項和為 ,試判斷 的大小,并加以證明.

【答案】
(1)解: ,

所以 函數(shù)單調(diào)遞減, 函數(shù)單調(diào)遞增.
從而
(2)解:若 恒成立,
,
設(shè)函數(shù) ,又 ,
則只需函數(shù) 上為單調(diào)遞減函數(shù),
上恒成立,
,
,則 ,從而 上單調(diào)遞減,在 單調(diào)遞增,
,
則存在 ,使得不等式恒成立
(3)解:由
,由 ,得 ,
因為 ,由(1)知 時, ,


【解析】(1)首先求出函數(shù)的定義域以及導函數(shù),根據(jù)導數(shù)符號即可求出原函數(shù)的單調(diào)性即可求出最大值。(2)根據(jù)題意結(jié)合函數(shù)的單調(diào)性和其導函數(shù)的關(guān)系,即可得到 φ ′ ( x ) ≤ 0 恒成立,分離出參數(shù)m后化為求函數(shù)最值即可并利用導數(shù)求得函數(shù)的最值。(3)整理數(shù)列的代數(shù)式求出數(shù)列 { an}的通項公式根據(jù)題意代入即可得到 a n> ln ( an + 1 ),進而得到Sn的表達式結(jié)合對數(shù)的性質(zhì)由裂項相消法即可得出結(jié)果。
【考點精析】根據(jù)題目的已知條件,利用利用導數(shù)研究函數(shù)的單調(diào)性和數(shù)列的前n項和的相關(guān)知識可以得到問題的答案,需要掌握一般的,函數(shù)的單調(diào)性與其導數(shù)的正負有如下關(guān)系: 在某個區(qū)間內(nèi),(1)如果,那么函數(shù)在這個區(qū)間單調(diào)遞增;(2)如果,那么函數(shù)在這個區(qū)間單調(diào)遞減;數(shù)列{an}的前n項和sn與通項an的關(guān)系

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知等差數(shù)列 有無窮項,且每一項均為自然數(shù),若75,99,235為 中的項,則下列自然數(shù)中一定是 中的項的是( )
A.2017
B.2019
C.2021
D.2023

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè) 為等比數(shù)列, 為等差數(shù)列,且 = = ,若 是1,1,2,…,求
(1)數(shù)列 的通項公式
(2)數(shù)列 的前10項的和.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】橢圓 的經(jīng)過中心的弦稱為橢圓的一條直徑,平行于該直徑的所有弦的中點的軌跡為一條線段,稱為該直徑的共軛直徑,已知橢圓的方程為 .

(1)若一條直徑的斜率為 ,求該直徑的共軛直徑所在的直線方程;
(2)若橢圓的兩條共軛直徑為 ,它們的斜率分別為 ,證明:四邊形 的面積為定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在三棱錐 中, 底面 分別是 的中點, ,且 .

(1)求證: 平面 ;
(2)在線段 上是否存在點 ,使二面角 的大小為 ?若存在,求出 的長;
若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在正三棱柱中,底面邊長為2,的中點,三棱柱的體積.

(1)求三棱柱的表面積;

(2)求異面直線所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)用五點法畫出它在一個周期內(nèi)的閉區(qū)間上的圖象;

(2)指出的周期、振幅、初相、對稱軸;

(3)說明此函數(shù)圖象可由的圖象經(jīng)怎樣的變換得到.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】有一塊半徑為的正常數(shù))的半圓形空地,開發(fā)商計劃征地建一個矩形的游泳池和其附屬設(shè)施,附屬設(shè)施占地形狀是等腰,其中為圓心, 在圓的直徑上, 在半圓周上,如圖.

(1)設(shè),征地面積為,求的表達式,并寫出定義域;

(2)當滿足取得最大值時,開發(fā)效果最佳,求出開發(fā)效果最佳的角的值,

求出的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)是兩條不同的直線, , , 是三個不同的平面,給出下列四個命題:

①若 ,則 ②若 , ,則

③若, ,則 ④若, ,則

其中正確命題的序號是( ).

A. ①和② B. ②和③ C. ③和④ D. ①和④

查看答案和解析>>

同步練習冊答案