【題目】有一塊半徑為的正常數(shù))的半圓形空地,開發(fā)商計(jì)劃征地建一個(gè)矩形的游泳池和其附屬設(shè)施,附屬設(shè)施占地形狀是等腰,其中為圓心, 在圓的直徑上, 在半圓周上,如圖.

(1)設(shè),征地面積為,求的表達(dá)式,并寫出定義域;

(2)當(dāng)滿足取得最大值時(shí),開發(fā)效果最佳,求出開發(fā)效果最佳的角的值,

求出的最大值.

【答案】(1);(2)當(dāng)時(shí), 有最大值為.

【解析】試題分析:(1)利用 ,四邊形由一個(gè)直角三角形和一個(gè)等腰三角形組成,分別求三角形面積即可求 的表達(dá)式;(2),令,可得,利用單調(diào)性求最值即可.

試題解析: (1)連接,

中, ,因?yàn)?/span>

.

(2),

,因?yàn)?/span>,所以,

所以

因?yàn)?/span>上單調(diào)遞增,所以時(shí)有最大值為,此時(shí).

答:(1);

(2)當(dāng)時(shí), 有最大值為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓)的離心率,且橢圓經(jīng)過點(diǎn),直線與橢圓交于不同的兩點(diǎn),

(1)求橢圓的方程;

(2)若的面積為1(為坐標(biāo)原點(diǎn)),求直線的方程

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知甲、乙兩地相距為千米,汽車從甲地勻速行駛到乙地,速度每小時(shí)不超過千米.已知汽車每小時(shí)的運(yùn)輸成本(單位:元)由可變部分和固定部分組成:固定部分為元,可變部分與速度(單位; )的平方成正比,且比例系數(shù)為.

(1)求汽車全程的運(yùn)輸成本(單位:元)關(guān)于速度(單位; )的函數(shù)解析式;

(2)為了全程的運(yùn)輸成本最小,汽車應(yīng)該以多大的速度行駛?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為研究冬季晝夜溫差大小對某反季節(jié)大豆新品種發(fā)芽率的影響,某農(nóng)科所記錄了5組晝夜溫差與100顆種子發(fā)芽數(shù),得到如下資料:

組號

1

2

3

4

5

溫差

10

11

13

12

8

發(fā)芽數(shù)

23

25

30

26

16

該所確定的研究方案是:先從這五組數(shù)據(jù)中選取2組,用剩下的3組數(shù)據(jù)求出線性回歸方程,再對被選取的2組數(shù)據(jù)進(jìn)行檢驗(yàn).

1若選取的是第1組與第5組的兩組數(shù)據(jù),請根據(jù)第2組至第4組的數(shù)據(jù),求出關(guān)于的線性回歸方程;

2若由線性回歸方程得到的估計(jì)數(shù)據(jù)與所選出的檢驗(yàn)數(shù)據(jù)的誤差均不超過2顆,則認(rèn)為得到的線性回歸方程是可靠的,試問1中所得的線性回歸方程是否可靠?

參考公式:,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩人練習(xí)罰球,每人練習(xí)6組,每組罰球20個(gè),命中個(gè)數(shù)的莖葉圖如下:

1求甲命中個(gè)數(shù)的中位數(shù)和乙命中個(gè)數(shù)的眾數(shù);

2通過計(jì)算,比較甲乙兩人的罰球水平.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知,函數(shù).

(1)當(dāng)時(shí),解不等式;

(2)若關(guān)于的方程的解集中恰有一個(gè)元素,求的取值范圍;

(3)設(shè),若對任意,函數(shù)在區(qū)間上的最大值與最小值的差不超過1,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知中心在坐標(biāo)原點(diǎn),焦點(diǎn)在軸上的橢圓,離心率為且過點(diǎn),過定點(diǎn)的動(dòng)直線與該橢圓相交于兩點(diǎn).

1若線段中點(diǎn)的橫坐標(biāo)是,求直線的方程;

2軸上是否存在點(diǎn),使為常數(shù)?若存在,求出點(diǎn)的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在多面體中,四邊形為正方形,,,,的中點(diǎn)

1求證:平面;

2在線段上是否存在一點(diǎn),使得二面角的大小為?若存在,求出的長;若不存在,請說明理由

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

1當(dāng)函數(shù)在點(diǎn)處的切線方程為,求函數(shù)的解析式;

21的條件下,若是函數(shù)的零點(diǎn),且,求的值;

3當(dāng)時(shí),函數(shù)有兩個(gè)零點(diǎn),且,求證:

查看答案和解析>>

同步練習(xí)冊答案