【題目】已知函數(shù).
(1)當(dāng)函數(shù)在點(diǎn)處的切線方程為,求函數(shù)的解析式;
(2)在(1)的條件下,若是函數(shù)的零點(diǎn),且,求的值;
(3)當(dāng)時(shí),函數(shù)有兩個(gè)零點(diǎn),且,求證:.
【答案】(1);(2);(3)證明見解析.
【解析】
試題分析:(1)先求出的導(dǎo)函數(shù),再根據(jù)且可以求得的值進(jìn)而得函數(shù)的解析式;(2)先根據(jù)導(dǎo)數(shù)研究函數(shù)的單調(diào)性,再根據(jù)零點(diǎn)定理判定出零點(diǎn)所在區(qū)間即可求得的值;(3)根據(jù)做差先將表示成關(guān)于的函數(shù),然后證明即可.
試題解析: (1),所以,
∴函數(shù)的解析式為;
(2),
因?yàn)楹瘮?shù)的定義域?yàn)?/span>,
令,
當(dāng)時(shí),,單調(diào)遞減,
當(dāng)時(shí),,函數(shù)單調(diào)遞增,
且函數(shù)的定義域?yàn)?/span>,
令,
且時(shí),單調(diào)遞減,
當(dāng)時(shí),,單調(diào)遞增,
且函數(shù)至少有1個(gè)零點(diǎn),而,不符合要求,
,
∴,故.
(3)當(dāng)時(shí),函數(shù),
,兩式相減可得
.
,因?yàn)?/span>,
所以
設(shè),
∴,
所以在上為增函數(shù),且,
∴,又,所以.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】有一塊半徑為的正常數(shù))的半圓形空地,開發(fā)商計(jì)劃征地建一個(gè)矩形的游泳池和其附屬設(shè)施,附屬設(shè)施占地形狀是等腰,其中為圓心, 在圓的直徑上, 在半圓周上,如圖.
(1)設(shè),征地面積為,求的表達(dá)式,并寫出定義域;
(2)當(dāng)滿足取得最大值時(shí),開發(fā)效果最佳,求出開發(fā)效果最佳的角的值,
求出的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】中央電視臺(tái)電視公開課《開講了》需要現(xiàn)場(chǎng)觀眾,先邀請(qǐng)甲、乙、丙、丁四所大學(xué)的40名學(xué)生參加,各大學(xué)邀請(qǐng)的學(xué)生如下表所示:
大學(xué) | 甲 | 乙 | 丙 | 丁 |
人數(shù) | 8 | 12 | 8 | 12 |
從這40名學(xué)生中按分層抽樣的方式抽取10名學(xué)生在第一排發(fā)言席就座.
(1)求各大學(xué)抽取的人數(shù);
(2)從(1)中抽取的乙大學(xué)和丁大學(xué)的學(xué)生中隨機(jī)選出2名學(xué)生發(fā)言,求這2名學(xué)生來(lái)自同一所大學(xué)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在直三棱柱ABC-A1B1C1中,AC=3,BC=4,AB=5,AA=4,點(diǎn)D是AB的中點(diǎn)
(1)求證:ACBC;
(2)求證:AC//平面CDB;
(3)求二面角B-DC-B1的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù) 在上單調(diào)遞增,
(1)若函數(shù)有實(shí)數(shù)零點(diǎn),求滿足條件的實(shí)數(shù)的集合;
(2)若對(duì)于任意的時(shí),不等式恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐中,底面,底面是直角梯形,.
(1)在上確定一點(diǎn),使得平面,并求的值;
(2)在(1)條件下,求平面與平面所成銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】函數(shù)的一段圖象如圖所示.
(1)求函數(shù)的解析式;
(2)將函數(shù)的圖象向右平移個(gè)單位,得到的圖象,求直線與
函數(shù)的圖象在內(nèi)所有交點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知直線l:與圓O:相交于A,B兩個(gè)不同的點(diǎn),且A,B.
(1)當(dāng)面積最大時(shí),求m的取值,并求出的長(zhǎng)度.
(2)判斷是否為定值;若是,求出定值的大;若不是,說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com