【題目】中央電視臺(tái)電視公開(kāi)課《開(kāi)講了》需要現(xiàn)場(chǎng)觀眾,先邀請(qǐng)甲、乙、丙、丁四所大學(xué)的40名學(xué)生參加,各大學(xué)邀請(qǐng)的學(xué)生如下表所示:

大學(xué)

人數(shù)

8

12

8

12

從這40名學(xué)生中按分層抽樣的方式抽取10名學(xué)生在第一排發(fā)言席就座

1求各大學(xué)抽取的人數(shù);

21中抽取的乙大學(xué)和丁大學(xué)的學(xué)生中隨機(jī)選出2名學(xué)生發(fā)言,求這2名學(xué)生來(lái)自同一所大學(xué)的概率

【答案】1,乙,丙 ,丁;2

【解析】

試題分析:1從這名學(xué)生中按照分層抽樣的方式抽取名學(xué)生,則各大學(xué)人數(shù)分別為甲,乙,丙,丁;2利用列舉出從參加問(wèn)卷調(diào)查的名學(xué)生中隨機(jī)抽取兩名學(xué)生的方法共有種,這來(lái)自同一所大學(xué)的取法共有種,再利用古典慨型的概率計(jì)算公式即可得出

試題解析:1從這40名學(xué)生中按照分層抽樣的方式抽取10名學(xué)生,則各大學(xué)人數(shù)分別為甲2,乙3,丙2,丁3

2設(shè)乙中3人為,丁中3人為,從這6名學(xué)生中隨機(jī)選出2名學(xué)生發(fā)言的結(jié)果為,,,,,,,,,,共15種,

這2名同學(xué)來(lái)自同一所大學(xué)的結(jié)果共6種,所以所求概率為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知甲、乙兩地相距為千米,汽車從甲地勻速行駛到乙地,速度每小時(shí)不超過(guò)千米.已知汽車每小時(shí)的運(yùn)輸成本(單位:元)由可變部分和固定部分組成:固定部分為元,可變部分與速度(單位; )的平方成正比,且比例系數(shù)為.

(1)求汽車全程的運(yùn)輸成本(單位:元)關(guān)于速度(單位; )的函數(shù)解析式;

(2)為了全程的運(yùn)輸成本最小,汽車應(yīng)該以多大的速度行駛?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知中心在坐標(biāo)原點(diǎn),焦點(diǎn)在軸上的橢圓,離心率為且過(guò)點(diǎn),過(guò)定點(diǎn)的動(dòng)直線與該橢圓相交于兩點(diǎn).

1若線段中點(diǎn)的橫坐標(biāo)是,求直線的方程;

2軸上是否存在點(diǎn),使為常數(shù)?若存在,求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在多面體中,四邊形為正方形,,,,,的中點(diǎn)

1求證:平面

2在線段上是否存在一點(diǎn),使得二面角的大小為?若存在,求出的長(zhǎng);若不存在,請(qǐng)說(shuō)明理由

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】屆夏季奧林匹克運(yùn)動(dòng)會(huì)2016852016821在巴西里約熱內(nèi)盧舉行為了解我校學(xué)生收看奧運(yùn)會(huì)足球賽是否與性別有關(guān),從全校學(xué)生中隨機(jī)抽取名進(jìn)行了問(wèn)卷調(diào)查,得到列聯(lián)表,從這名同學(xué)中隨機(jī)抽取人,抽到收看奧運(yùn)會(huì)足球賽 的學(xué)生的概率是.

男生

女生

合計(jì)

收看

不收看

合計(jì)

1請(qǐng)將上面的列聯(lián)表補(bǔ)充完整,并據(jù)此資料分析收看奧運(yùn)會(huì)足球賽與性別是否有關(guān);

2若從這名同學(xué)中的男同學(xué)中隨機(jī)抽取人參加有獎(jiǎng)競(jìng)猜活動(dòng),記抽到收看奧運(yùn)會(huì)足球賽的學(xué)生人數(shù)為,求的分布列和數(shù)學(xué)期望.

參考公式:

,其中

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知是數(shù)列的前項(xiàng)和,且滿足,等差數(shù)列的前項(xiàng)和為,且 .

(Ⅰ)求數(shù)列的通項(xiàng)公式;

(Ⅱ)若數(shù)列的通項(xiàng)公式為,問(wèn)是否存在互不相等的正整數(shù), 使得, , 成等差數(shù)列,且 , , 成等比數(shù)列?若存在,求出, , ;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)的兩個(gè)極值點(diǎn)為,且.

(1)求的值;

(2)若(其中上是單調(diào)函數(shù), 的取值范圍;

(3)當(dāng)時(shí), 求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

1當(dāng)函數(shù)在點(diǎn)處的切線方程為,求函數(shù)的解析式;

21的條件下,若是函數(shù)的零點(diǎn),且,求的值;

3當(dāng)時(shí),函數(shù)有兩個(gè)零點(diǎn),且,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,在邊長(zhǎng)為1的等邊三角形中,分別是,上的點(diǎn),,的中點(diǎn),交于點(diǎn),沿折起,得到如圖2所示的三棱錐,其中.

1求證:平面平面

2,上的中點(diǎn),中點(diǎn),求異面直線所成角的余弦值

查看答案和解析>>

同步練習(xí)冊(cè)答案