【題目】已知甲、乙兩地相距為千米,汽車從甲地勻速行駛到乙地,速度每小時不超過千米.已知汽車每小時的運(yùn)輸成本(單位:元)由可變部分和固定部分組成:固定部分為元,可變部分與速度(單位; )的平方成正比,且比例系數(shù)為.
(1)求汽車全程的運(yùn)輸成本(單位:元)關(guān)于速度(單位; )的函數(shù)解析式;
(2)為了全程的運(yùn)輸成本最小,汽車應(yīng)該以多大的速度行駛?
【答案】(1) ;(2) 為了全程的運(yùn)輸成本最小,當(dāng)時,汽車行駛速度為;當(dāng)時,汽車行駛速度為.
【解析】試題分析:
(1)由題意寫出解析式
(2)由(1)中的解析式結(jié)合均值不等式的結(jié)論分類討論可得當(dāng)時,汽車行駛速度為 ;當(dāng)時,汽車行駛速度為 .
試題解析:
(1)
(2)
當(dāng)時, ,當(dāng)且僅當(dāng)時,等號成立, 當(dāng)時, 時, ;
當(dāng)時,證明函數(shù)在區(qū)間上是減函數(shù),則當(dāng)時, .
答:為了全程的運(yùn)輸成本最小,當(dāng)時,汽車行駛速度為 ;當(dāng)時,汽車行駛速度為 .
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給出下列四個命題:
①函數(shù)的圖像過定點(diǎn);
②已知函數(shù)是定義在上的偶函數(shù),當(dāng)時,,則的解析式為;
③函數(shù)的圖像可由函數(shù)圖像向右平移一個單位得到;
④函數(shù)圖像上的點(diǎn)到距離的最小值是.
其中所有正確命題的序號是_____________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的兩個焦點(diǎn)與短軸的一個端點(diǎn)是等邊三角形的三個頂點(diǎn),且長軸長為4.
(Ⅰ)求橢圓的方程;
(Ⅱ)若是橢圓的左頂點(diǎn),經(jīng)過左焦點(diǎn)的直線與橢圓交于,兩點(diǎn),求與的面積之差的絕對值的最大值.(為坐標(biāo)原點(diǎn))
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義在上的偶函數(shù)滿足,且在上是減函數(shù),若是銳角三角形的兩個內(nèi)角,則下列各式一定成立的是( )
A. B.
C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】將函數(shù)的圖象向左平移個單位長度,再向上平移1個單位長度,得到函數(shù)的圖象,則函數(shù)具有性質(zhì)__________.(填入所有正確性質(zhì)的序號)
①最大值為,圖象關(guān)于直線對稱;
②圖象關(guān)于軸對稱;
③最小正周期為;
④圖象關(guān)于點(diǎn)對稱;
⑤在上單調(diào)遞減
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù).
(1)當(dāng)時,求曲線在點(diǎn)處的切線方程;
(2)當(dāng)時,若對任意,不等式恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)據(jù),,,…,是杭州市100個普通職工的2016年10月份的收入(均不超過2萬元),設(shè)這100個數(shù)據(jù)的中位數(shù)為,平均數(shù)為,方差為,如果再加上馬云2016年10月份的收入(約100億元),則相對于、、,這101個月收入數(shù)據(jù)( )
A.平均數(shù)可能不變,中位數(shù)可能不變,方差可能不變
B.平均數(shù)大大增大,中位數(shù)可能不變,方差也不變
C.平均數(shù)大大增大,中位數(shù)一定變大,方差可能不變
D.平均數(shù)大大增大,中位數(shù)可能不變,方差變大
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】有一塊半徑為的正常數(shù))的半圓形空地,開發(fā)商計劃征地建一個矩形的游泳池和其附屬設(shè)施,附屬設(shè)施占地形狀是等腰,其中為圓心, 在圓的直徑上, 在半圓周上,如圖.
(1)設(shè),征地面積為,求的表達(dá)式,并寫出定義域;
(2)當(dāng)滿足取得最大值時,開發(fā)效果最佳,求出開發(fā)效果最佳的角的值,
求出的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】中央電視臺電視公開課《開講了》需要現(xiàn)場觀眾,先邀請甲、乙、丙、丁四所大學(xué)的40名學(xué)生參加,各大學(xué)邀請的學(xué)生如下表所示:
大學(xué) | 甲 | 乙 | 丙 | 丁 |
人數(shù) | 8 | 12 | 8 | 12 |
從這40名學(xué)生中按分層抽樣的方式抽取10名學(xué)生在第一排發(fā)言席就座.
(1)求各大學(xué)抽取的人數(shù);
(2)從(1)中抽取的乙大學(xué)和丁大學(xué)的學(xué)生中隨機(jī)選出2名學(xué)生發(fā)言,求這2名學(xué)生來自同一所大學(xué)的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com