【題目】已知函數(shù)的兩個極值點為,且.
(1)求的值;
(2)若在(其中上是單調(diào)函數(shù), 求的取值范圍;
(3)當(dāng)時, 求證:.
【答案】(1)(2)(3)詳見解析
【解析】
試題分析:(1)由極值定義得得兩根為,由韋達(dá)定理得,解得,再根據(jù)二次方程求根公式得(2)由(1)可得函數(shù)有三個單調(diào)區(qū)間,由于,所以為單調(diào)區(qū)間的一個子集,即或,(3)利用不等式乘積性質(zhì)證明不等式:利用導(dǎo)數(shù)可得先將后增,有最小值所以;根據(jù)二次函數(shù)最值得,由于兩個不等式中等號取法不一致,所以乘積中等號取不到
試題解析:(1)由
得,
由得.
(2)由(1)知, 在上遞減, 在上遞增, 其中,
當(dāng) 在上遞減時,, 又,當(dāng) 在上遞增時,, 綜上, 的取值范圍為.
(3)證明: 設(shè),則,令,得;令,得.,(當(dāng)時取等號),
不等式成立(因為取等條件不相同, 所以等號取不到).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)據(jù),,,…,是杭州市100個普通職工的2016年10月份的收入(均不超過2萬元),設(shè)這100個數(shù)據(jù)的中位數(shù)為,平均數(shù)為,方差為,如果再加上馬云2016年10月份的收入(約100億元),則相對于、、,這101個月收入數(shù)據(jù)( )
A.平均數(shù)可能不變,中位數(shù)可能不變,方差可能不變
B.平均數(shù)大大增大,中位數(shù)可能不變,方差也不變
C.平均數(shù)大大增大,中位數(shù)一定變大,方差可能不變
D.平均數(shù)大大增大,中位數(shù)可能不變,方差變大
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】春節(jié)期間某超市搞促銷活動,當(dāng)顧客購買商品的金額達(dá)到一定數(shù)量后可以參加抽獎活動,活動規(guī)則為:從裝有個黑球, 個紅球, 個白球的箱子中(除顏色外,球完全相同)摸球.
(Ⅰ)當(dāng)顧客購買金額超過元而不超過元時,可從箱子中一次性摸出個小球,每摸出一個黑球獎勵元的現(xiàn)金,每摸出一個紅球獎勵元的現(xiàn)金,每摸出一個白球獎勵元的現(xiàn)金,求獎金數(shù)不少于元的概率;
(Ⅱ)當(dāng)購買金額超過元時,可從箱子中摸兩次,每次摸出個小球后,放回再摸一次,每摸出一個黑球和白球一樣獎勵元的現(xiàn)金,每摸出一個紅球獎勵元的現(xiàn)金,求獎金數(shù)小于元的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】中央電視臺電視公開課《開講了》需要現(xiàn)場觀眾,先邀請甲、乙、丙、丁四所大學(xué)的40名學(xué)生參加,各大學(xué)邀請的學(xué)生如下表所示:
大學(xué) | 甲 | 乙 | 丙 | 丁 |
人數(shù) | 8 | 12 | 8 | 12 |
從這40名學(xué)生中按分層抽樣的方式抽取10名學(xué)生在第一排發(fā)言席就座.
(1)求各大學(xué)抽取的人數(shù);
(2)從(1)中抽取的乙大學(xué)和丁大學(xué)的學(xué)生中隨機(jī)選出2名學(xué)生發(fā)言,求這2名學(xué)生來自同一所大學(xué)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)的定義域為,若存在閉區(qū)間[m,n] D,使得函數(shù)滿足:①在[m,n]上是單調(diào)函數(shù);②在[m,n]上的值域為[2m,2n],則稱區(qū)間[m,n]為的“倍值區(qū)間”.下列函數(shù)中存在“倍值區(qū)間”的有 .(填上所有正確的序號)
①;
②;
③;
④.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直三棱柱ABC-A1B1C1中,AC=3,BC=4,AB=5,AA=4,點D是AB的中點
(1)求證:ACBC;
(2)求證:AC//平面CDB;
(3)求二面角B-DC-B1的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) 在上單調(diào)遞增,
(1)若函數(shù)有實數(shù)零點,求滿足條件的實數(shù)的集合;
(2)若對于任意的時,不等式恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下表提供了某公司技術(shù)升級后生產(chǎn)產(chǎn)品過程中記錄的產(chǎn)量(噸)與相應(yīng)的成本(萬元)的幾組對照數(shù)據(jù):
(1)請畫出上表數(shù)據(jù)的散點圖;
(2)請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出對的回歸直線方程;
(3)已知該公司技術(shù)升級前生產(chǎn)100噸產(chǎn)品的成本為90萬元.試根據(jù)(2)求出的回歸直線方程,預(yù)測技術(shù)升級后生產(chǎn)100噸產(chǎn)品的成本比技術(shù)升級前約降低多少萬元?
(附: , ,其中為樣本平均值)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com