在直角坐標(biāo)系xOy中,以O為極點,x軸正半軸為極軸建立極坐標(biāo)系.圓C1,直線C2的極坐標(biāo)方程分別為ρ=4sin θ,ρcos =2.
(1)求C1C2交點的極坐標(biāo);
(2)設(shè)PC1的圓心,QC1C2交點連線的中點.已知直線PQ的參數(shù)方程為 (t∈R為參數(shù)),求ab的值.
(1),(2)
(1)圓C1的直角坐標(biāo)方程為x2+(y-2)2=4,直線C2的直角坐標(biāo)方程為xy-4=0.
, 
所以C1C2交點的極坐標(biāo)為,.
注:極坐標(biāo)系下點的表示不唯一.
(2)由(1)可得,P點與Q點的直角坐標(biāo)分別為(0,2),(1,3).
故直線PQ的直角坐標(biāo)方程為xy+2=0,
由參數(shù)方程可得yx+1.
所以解得
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)),以該直角坐標(biāo)系的原點為極點,軸的正半軸為極軸的極坐標(biāo)系下,曲線的方程為.
(1)求曲線的普通方程和曲線的直角坐標(biāo)方程;
(2)設(shè)曲線和曲線的交點為,求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在直角坐標(biāo)系xOy中,以原點O為極點,x軸的正半軸為極軸建立極坐標(biāo)系.若極坐標(biāo)方程為ρcosθ=4的直線與曲線(t為參數(shù))相交于A、B兩點,求|AB|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

在極坐標(biāo)系中,過點且與極軸平行的直線方程是( )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在平面直角坐標(biāo)系xOy中,曲線C1的參數(shù)方程為(φ為參數(shù)),曲線C2的參數(shù)方程為(a>b>0,φ為參數(shù)),在以O(shè)為極點,x軸的正半軸為極軸的極坐標(biāo)系中,射線l:θ=α與C1,C2各有一個交點.當(dāng)α=0時,這兩個交點間的距離為2,當(dāng)α=時,這兩個交點重合.
(1)分別說明C1,C2是什么曲線,并求出a與b的值.
(2)設(shè)當(dāng)α=時,l與C1,C2的交點分別為A1,B1,當(dāng)α=-時,l與C1,C2的交點為A2,B2,求四邊形A1A2B2B1的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

從原點O引直線交直線2x+4y-1=0于點M,P為OM上一點,已知OP·OM=1,求P點所在曲線的極坐標(biāo)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

在極坐標(biāo)系中,圓ρ=2cos θ的垂直于極軸的兩條切線方程分別為(  )
A.θ=0(ρ∈R)和ρcos θ=2
B.θ(ρ∈R)和ρcos θ=2
C.θ(ρ∈R)和ρcos θ=1
D.θ=0(ρ∈R)和ρcos θ=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

在直角坐標(biāo)系中,以原點為極點,軸的正半軸為極軸建立極坐標(biāo)系.若曲線的參數(shù)方程為為參數(shù)),曲線的極坐標(biāo)方程為.則曲線與曲線的交點個數(shù)為________個.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知曲線的極坐標(biāo)方程為:,曲線C上的任意一個點P的直角坐標(biāo)為,則的取值范圍為    .

查看答案和解析>>

同步練習(xí)冊答案