已知f(x5)=log2x,求f(4).
考點:對數(shù)的運算性質(zhì)
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:利用函數(shù)的解析式和對數(shù)的運算法則直接求解.
解答: 解:∵f(x5)=log2x,
設(shè)x5=t,則x=
5t
,
∴f(t)=log2
5t
,
∴f(4)=log2
54
=log22
2
5
=
2
5
點評:本題考查函數(shù)值的求法,是基礎(chǔ)題,解題時要熟練掌握對數(shù)的運算法則.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知總體的各個體的值由小到大依次為2,3,3,7,x,y,12,13.6,18.4,20,且總體的中位數(shù)為10.5.若要使該總體的標(biāo)準(zhǔn)差最小,則4x+2y的值是( 。
A、61B、62C、63D、64

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列函數(shù)中,為奇函數(shù)的是( 。
A、y=2x+
1
2x
B、y=x,x∈{0,1}
C、y=x•sinx
D、y=
1,x<0
0,x=0
-1,x>0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

為了解某班學(xué)生喜愛打籃球是否與性別有關(guān),對本班50人進(jìn)行了問卷調(diào)查得到了如下的列聯(lián)表:
喜愛打籃球 不喜愛打籃球 合計
男生 a 5
女生 10 d
合計 50
為了進(jìn)一步了解男生喜愛打籃球與不喜愛打籃球的原因,應(yīng)再從男生中用分層抽樣的方法抽出10人作進(jìn)一步調(diào)查,已知抽取的不喜愛打籃球的男生為2人.
(Ⅰ)求表中a、d的數(shù)值,并將上面的列聯(lián)表補(bǔ)充完整(不用寫計算過程);
(Ⅱ)能否在犯錯誤的概率不超過0.005的前提下認(rèn)為喜愛打籃球與性別有關(guān)?說明你的理由;
下面的臨界值表供參考:
p(K2≥k) 0.15 0.10 0.05 0.025 0.010 0.005 0.001
k 2.072 2.706 3.841 5.024 6.635 7.879 10.828
(參考公式:K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
,其中n=a+b+c+d)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知cos(π+x)=
4
5
,且
π
2
<x<π,求sin(3π+x)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知三點A(1,12),B(7,10),C(-9,2).
(1)求過A,B,C,三點的圓的方程,并指出此圓的圓心與半徑;
(2)若點(x,y)在(1)所求的圓上,求m=x+y的最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)x,y,a都是實數(shù),且x+y=2a-1,x2+y2=a2+2a-3,求乘積xy的最小值及相應(yīng)的a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

巴西醫(yī)生馬廷思收集犯有各種貪污、受賄罪的官員與廉潔官員壽命的調(diào)查資料:50名貪官中有35人的壽命小于平均壽命、15人的壽命大于或等于平均壽命;60名廉潔官員中有10人的壽命小于平均壽命、50人的壽命大于或等于平均壽命這里,平均壽命是指“當(dāng)?shù)厝司鶋勖痹囉锚毩⑿詸z驗的思想分析官員在經(jīng)濟(jì)上是否清廉與他們壽命的長短之間是否獨立?k2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)

P(K2≥k) 0.15 0.10 0.05 0.025 0.010 0.005 0.001
k 2.072 2.706 3.841 5.024 6.635 7.879 10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

為了倡導(dǎo)健康、低碳、綠色的生活理念,某市建立了公共自行車服務(wù)系統(tǒng)鼓勵市民租用公共自行車出行,公共自行車按每車每次的租用時間進(jìn)行收費,具體收費標(biāo)準(zhǔn)如下:
①租用時間不超過1小時,免費;
②租用時間為1小時以上且不超過2小時,收費1元;
③租用時間為2小時以上且不超過3小時,收費2元;
④租用時間超過3小時的時段,按每小時2元收費(不足1小時的部分按1小時計算).
已知甲、乙兩人獨立出行,各租用公共自行車一次,兩人租車時間都不會超過3小時,設(shè)甲、乙租用時間不超過1小時的概率分別是0.4和0.5;租用時間為1小時以上且不超過2小時的概率分別是0.5和0.3.
(Ⅰ)求甲、乙兩人所付租車費相同的概率;
(Ⅱ)設(shè)甲、乙兩人所付租車費之和為隨機(jī)變量ξ,求ξ的分布列和數(shù)學(xué)期望Eξ

查看答案和解析>>

同步練習(xí)冊答案