【題目】如圖,斜三棱柱中,為銳角,底面是以為斜邊的等腰直角三角形, .
(1)證明:平面 平面;
(2)若直線與底面成角為, ,求二面角的余弦值.
【答案】(1)證明見解析.
(2) .
【解析】分析:(1)先證明平面,再證明平面 平面.(2)利用空間向量求二面角的余弦值.
詳解:(1)因?yàn)?/span>,,,所以平面.
因?yàn)?/span>平面,所以平面 平面.
(2)因?yàn)?/span> 平面,在平面內(nèi)作,垂足為,
所以平面.因?yàn)?/span>底面成角為,所以.
因?yàn)?/span>,,所以平面,
所以,
四邊形是菱形.因?yàn)?/span>為銳角,
所以,于是是中點(diǎn).
設(shè),以為坐標(biāo)原點(diǎn),為x軸正方向,建立如圖所示的空間直角坐標(biāo)系.
則,,,,
,,.
設(shè)是平面的一個(gè)法向量,
則,即,
可以取.
設(shè)是平面的一個(gè)法向量,
則,即,
可以取.
因?yàn)?/span>,二面角平面角是鈍角,
故二面角的余弦值是.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知對(duì)任意的實(shí)數(shù),都有:,且當(dāng)時(shí),有.
(1)求;
(2)求證:在上為增函數(shù);
(3)若,且關(guān)于的不等式對(duì)任意的恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知四棱錐中, 平面,底面為菱形, , 是中點(diǎn), 是的中點(diǎn), 是上的點(diǎn).
(Ⅰ)求證:平面平面;
(Ⅱ)當(dāng)是中點(diǎn),且時(shí),求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=ln2x-2aln(ex)+3,x∈[e-1,e2]
(1)當(dāng)a=1時(shí),求函數(shù)f(x)的值域;
(2)若f(x)≤-alnx+4恒成立,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在五面體中, , , , ,平面平面..
(1)證明:直線平面;
(2)已知為棱上的點(diǎn),試確定點(diǎn)位置,使二面角的大小為.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù).
(1)討論的單調(diào)性;
(2)若函數(shù)有兩個(gè)極值點(diǎn)、,且,求證: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某調(diào)查機(jī)構(gòu)對(duì)本市小學(xué)生課業(yè)負(fù)擔(dān)情況進(jìn)行了調(diào)查,設(shè)平均每人每天做作業(yè)的時(shí)間為分鐘,有1200名小學(xué)生參加了此項(xiàng)調(diào)查,調(diào)查所得到的數(shù)據(jù)用程序框圖處理(如圖),若輸出的結(jié)果是840,若用樣本頻率估計(jì)概率,則平均每天做作業(yè)的時(shí)間在0~60分鐘內(nèi)的學(xué)生的概率是( )
A. 0.32 B. 0.36 C. 0.7 D. 0.84
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知集合的元素個(gè)數(shù)為個(gè)且元素為正整數(shù),將集合分成元素個(gè)數(shù)相同且兩兩沒有公共元素的三個(gè)集合,即,,,,其中,,,若集合中的元素滿足,,,則稱集合為“完美集合”例如:“完美集合”,此時(shí).若集合,為“完美集合”,則的所有可能取值之和為( )
A.B.C.D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com