【題目】已知函數(shù)f(x)=ln2x-2aln(ex)+3,x∈[e-1,e2]

(1)當(dāng)a=1時,求函數(shù)f(x)的值域;

(2)若f(x)≤-alnx+4恒成立,求實數(shù)a的取值范圍.

【答案】(1)[0,4].(2)a.

【解析】

試題(1)先換元,轉(zhuǎn)化為二次函數(shù),再根據(jù)對稱軸與定義區(qū)間位置關(guān)系求值域,(2)先換元,轉(zhuǎn)化為二次不等式恒成立問題,再根據(jù)二次函數(shù)對稱軸與定義區(qū)間位置關(guān)系,分類討論實數(shù)a的取值范圍.

試題解析:(1)當(dāng)a=1時,yf(x)=ln2x-2lnx+1,

t=lnx∈[-1,2],

yt2-2t+1=(t-1)2

當(dāng)t=1時,取得最小值0;t=-1時,取得最大值4.

f(x)的值域為[0,4].

(2)∵f(x)≤-alnx+4,

∴l(xiāng)n2xalnx-2a-1≤0恒成立,

t=lnx∈[-1,2],∴t2at-2a-1≤0恒成立,

設(shè)yt2at-2a-1,

∴當(dāng),即a≤1時,ymax=-4a+3≤0,∴a≤1,

當(dāng),即a>1時,ymax=-a≤0,∴a>1,

綜上所述,a.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點是圓上任意一點,點與點關(guān)于原點對稱,線段的垂直平分線與交于.

(1)求點的軌跡的方程;

(2)過點的動直線與點的軌跡交于兩點,在軸上是否存在定點使以為直徑的圓恒過這個點?若存在,求出點的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某地區(qū)居民生活用電分為高峰和低谷兩個時間段進行分時計價.該地區(qū)的電網(wǎng)銷售電價表如下:

高峰時間段用電價格表

低谷時間段用電價格表

高峰月用

電量(單

位:千瓦時)

高峰電價

(單位:元/

千瓦時)

低谷月用

電量(單位:

千瓦時)

低谷電價

(單位:元/

千瓦時)

50及以下

的部分

0.568

50及以下

的部分

0.288

超過 50 至

200 的部分

0.598

超過 50 至

200 的部分

0.318

超過200

的部分

0.668

超過 200

的部分

0.388

若某家庭5月份的高峰時間段用電量為 200 千瓦時,低谷時間段用電量為 100 千瓦時,則按這種計費方式該家庭本月應(yīng)付的電費為____________元.(用數(shù)字作答)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某產(chǎn)品生產(chǎn)廠家根據(jù)以往的生產(chǎn)銷售經(jīng)驗得到下面有關(guān)生產(chǎn)銷售的統(tǒng)計規(guī)律:每生產(chǎn)產(chǎn)品(百臺),其總成本為G()(萬元),其中固定成本為萬元,并且每生產(chǎn)百臺的生產(chǎn)成本為萬元(總成本 = 固定成本 + 生產(chǎn)成本);銷售收入R()(萬元)滿足:,假定該產(chǎn)品產(chǎn)銷平衡,那么根據(jù)上述統(tǒng)計規(guī)律:

(Ⅰ)要使工廠有贏利,產(chǎn)量應(yīng)控制在什么范圍?

(Ⅱ)工廠生產(chǎn)多少臺產(chǎn)品時,可使贏利最多?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,沿河有A、B兩城鎮(zhèn),它們相距20千米,以前,兩城鎮(zhèn)的污水直接排入河里,現(xiàn)為保護環(huán)境,污水需經(jīng)處理才能排放,兩城鎮(zhèn)可以單獨建污水處理廠,或者聯(lián)合建污 水處理廠(在兩城鎮(zhèn)之間或其中一城鎮(zhèn)建廠,用管道將污水從各城鎮(zhèn)向污水處理廠輸送),依據(jù)經(jīng)驗公式,建廠的費用為f(m)=25m0.7(萬元),m表示污水流量,鋪設(shè)管道的費用(包括管道費) (萬元),x表示輸送污水管道的長度(千米);
已知城鎮(zhèn)A和城鎮(zhèn)B的污水流量分別為m1=3、m2=5,A、B兩城鎮(zhèn)連接污水處理廠的管道總長為20千米;假定:經(jīng)管道運輸?shù)奈鬯髁坎话l(fā)生改變,污水經(jīng)處理后直接排入河中;請解答下列問題(結(jié)果精確到0.1)

(1)若在城鎮(zhèn)A和城鎮(zhèn)B單獨建廠,共需多少總費用?
(2)考慮聯(lián)合建廠可能節(jié)約總投資,設(shè)城鎮(zhèn)A到擬建廠的距離為x千米,求聯(lián)合建廠的總費用y與x的函數(shù)關(guān)系 式,并求y的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,已知點是拋物線上一定點,直線的斜率互為相反數(shù),且與拋物線另交于兩個不同的點.

1)求點到其準(zhǔn)線的距離;(2)求證:直線的斜率為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=(x.

(Ⅰ)當(dāng)x∈[﹣1,1]時,求函數(shù)y=[f(x)]2﹣2af(x)+3的最小值g(a);

(Ⅱ)在(Ⅰ)的條件下,是否存在實數(shù)m>n>3,使得g(x)的定義域為[n,m],值域為[n2,m2]?若存在,求出m、n的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)當(dāng)時,若,且對任意的,都存在,使得成立,求實數(shù)a的取值范圍;

(2)當(dāng)時,求x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若定義域為的函數(shù)同時滿足以下三條:

(。⿲θ我獾總有(ⅱ)

(ⅲ)若則有就稱為“A函數(shù)”,下列定義在的函數(shù)中為“A函數(shù)”的有_______________

;②

查看答案和解析>>

同步練習(xí)冊答案