【題目】如圖程序框圖是為了求出滿足3n﹣2n>1000的最小偶數(shù)n,那么在 和 兩個空白框中,可以分別填入( 。
A.A>1000和n=n+1
B.A>1000和n=n+2
C.A≤1000和n=n+1
D.A≤1000和n=n+2
【答案】D
【解析】解:因為要求A>1000時輸出,且框圖中在“否”時輸出,
所以“ ”內(nèi)不能輸入“A>1000”,
又要求n為偶數(shù),且n的初始值為0,
所以“ ”中n依次加2可保證其為偶數(shù),
所以D選項滿足要求,
故選:D.
【考點精析】關(guān)于本題考查的算法的循環(huán)結(jié)構(gòu)和程序框圖,需要了解在一些算法中,經(jīng)常會出現(xiàn)從某處開始,按照一定條件,反復(fù)執(zhí)行某一處理步驟的情況,這就是循環(huán)結(jié)構(gòu),循環(huán)結(jié)構(gòu)可細(xì)分為兩類:當(dāng)型循環(huán)結(jié)構(gòu)和直到型循環(huán)結(jié)構(gòu);程序框圖又稱流程圖,是一種用規(guī)定的圖形、指向線及文字說明來準(zhǔn)確、直觀地表示算法的圖形;一個程序框圖包括以下幾部分:表示相應(yīng)操作的程序框;帶箭頭的流程線;程序框外必要文字說明才能得出正確答案.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角梯形PBCD中, ,A為PD的中點,如下左圖。將沿AB折到的位置,使,點E在SD上,且,如下圖。
(1)求證: 平面ABCD;
(2)求二面角E—AC—D的正切值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,將菱形ABCD沿對角線BD折起,使得C點至C′,E點在線段AC′上,若二面角A﹣BD﹣E與二面角E﹣BD﹣C′的大小分別為15°和30°,則__.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,AB∥CD,且∠BAP=∠CDP=90°.(12分)
(1)證明:平面PAB⊥平面PAD;
(2)若PA=PD=AB=DC,∠APD=90°,求二面角A﹣PB﹣C的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)數(shù)列{an}的前n項和為Sn.已知2Sn=3n+3.
(1)求{an}的通項公式;
(2)若數(shù)列{bn}滿足anbn=log3an,求{bn}的前n項和Tn.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知三棱錐S﹣ABC的所有頂點都在球O的球面上,SC是球O的直徑,若平面SCA⊥平面SCB,SA=AC,SB=BC,三棱錐S﹣ABC的體積為9,則球O的表面積為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若x=﹣2是函數(shù)f(x)=(x2+ax﹣1)ex﹣1的極值點,則f(x)的極小值為( )
A.﹣1
B.﹣2e﹣3
C.5e﹣3
D.1
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在用“五點法”畫函數(shù)f(x)=Asin(ωx+φ)(ω>0,|φ|< )在某一周期內(nèi)的圖象時,列表并填入了部分?jǐn)?shù)據(jù),如下表:
ωx+φ | 0 | π | 2π | ||
x | π | ||||
Asin(ωx+φ) | 0 | 3 | ﹣3 | 0 |
(1)請將上表空格中處所缺的數(shù)據(jù)填寫在答題卡的相應(yīng)位置上,并直接寫出函數(shù)f(x)的解析式;
(2)將y=f(x)圖象上所有點的橫坐標(biāo)縮短為原來的 ,再將所得圖象向左平移 個單位,得到y(tǒng)=g(x)的圖象,求g(x)的單調(diào)遞增區(qū)間.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com