【題目】四棱錐中,平面平面,四邊形為矩形,,,.
(1)求證:平面;
(2)若直線與平面所成角的正弦值為,求二面角的余弦值.
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓 的左、右焦點分別是,,,是其左右頂點,點是橢圓上任一點,且的周長為6,若面積的最大值為.
(1)求橢圓的方程;
(2)若過點且斜率不為0的直線交橢圓于,兩個不同點,證明:直線與的交點在一條定直線上.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的離心率為,橢圓的左焦點為,橢圓上任意點到的最遠距離是,過直線與軸的交點任作一條斜率不為零的直線與橢圓交于不同的兩點、,點關(guān)于軸的對稱點為.
(1)求橢圓的方程;
(2)求證:、、三點共線;
(3)求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】十八大以來,我國新能源產(chǎn)業(yè)迅速發(fā)展.以下是近幾年某新能源產(chǎn)品的年銷售量數(shù)據(jù):
年份 | 2014 | 2015 | 2016 | 2017 | 2018 |
年份代碼 | 1 | 2 | 3 | 4 | 5 |
新能源產(chǎn)品年銷售(萬個) | 1.6 | 6.2 | 17.7 | 33.1 | 55.6 |
(1)請畫出上表中年份代碼與年銷量的數(shù)據(jù)對應的散點圖,并根據(jù)散點圖判斷.
與中哪一個更適宜作為年銷售量關(guān)于年份代碼的回歸方程類型;
(2)根據(jù)(Ⅰ)的判斷結(jié)果及表中數(shù)據(jù),建立關(guān)于的回歸方程,并預測2019年某新能源產(chǎn)品的銷售量(精確到0.01).
參考公式:,.
參考數(shù)據(jù):,,,,,,,其中.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設拋物線:的焦點為,直線與交于,兩點,的面積為.
(1)求的方程;
(2)若,是上的兩個動點,,試問:是否存在定點,使得?若存在,求的坐標,若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知為坐標原點,橢圓:的離心率為,直線:交橢圓于,兩點,,且點在橢圓上,當時,.
(1)求橢圓方程;
(2)試探究四邊形的面積是否為定值,若是,求出此定值;若不是,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知拋物線的頂點在原點,過點A(-4,4)且焦點在x軸.
(1)求拋物線方程;
(2)直線l過定點B(-1,0)與該拋物線相交所得弦長為8,求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】定義域為的函數(shù)圖像的兩個端點為、,向量,是圖像上任意一點,其中,若不等式恒成立,則稱函數(shù)在上滿足“范圍線性近似”,其中最小正實數(shù)稱為該函數(shù)的線性近似閾值.若函數(shù)定義在上,則該函數(shù)的線性近似閾值是( )
A. B. C. D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com