【題目】已知矩形ABCD的邊AB=a,BC=3,PA⊥平面ABCD,若BC邊上有且只有一點M,使PM⊥DM,則a的值為

【答案】1.5
【解析】解:∵PA⊥平面ABCD,
∴PA⊥DM,
若BC邊上存在點M,使PM⊥MD,
則DM⊥面PAM,
即DM⊥AM,
∴以AD為直徑的圓和BC相交即可.
∵AD=BC=3,
∴圓的半徑為3,
要使線段BC和半徑為3的圓相切,
則AB=1.5,
即a=1.5,
∴a的值是1.5.
所以答案是:1.5.

【考點精析】本題主要考查了直線與平面垂直的判定的相關(guān)知識點,需要掌握一條直線與一個平面內(nèi)的兩條相交直線都垂直,則該直線與此平面垂直;注意點:a)定理中的“兩條相交直線”這一條件不可忽視;b)定理體現(xiàn)了“直線與平面垂直”與“直線與直線垂直”互相轉(zhuǎn)化的數(shù)學(xué)思想才能正確解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直三棱柱中,,中點,交于點

(1)求證:平面

(2)求證:平面;

(3)求三棱錐的表面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】根據(jù)環(huán)境保護部《環(huán)境空氣質(zhì)量指數(shù)()技術(shù)規(guī)定》,空氣質(zhì)量指數(shù)()在201—300之間為重度污染;在301—500之間為嚴重污染.依據(jù)空氣質(zhì)量預(yù)報,同時綜合考慮空氣污染程度和持續(xù)時間,將空氣重污染分4個預(yù)警級別,由輕到重依次為預(yù)警四級、預(yù)警三級、預(yù)警二級、預(yù)警一級,分別用藍、黃、橙、紅顏色標示,預(yù)警一級(紅色)為最高級別.(一)預(yù)警四級(藍色):預(yù)測未來1天出現(xiàn)重度污染;(二)預(yù)警三級(黃色):預(yù)測未來1天出現(xiàn)嚴重污染或持續(xù)3天出現(xiàn)重度污染;(三)預(yù)警二級(橙色);預(yù)測未來持續(xù)3天交替出現(xiàn)重度污染或嚴重污染;(四)預(yù)警一級(紅色);預(yù)測未來持續(xù)3天出現(xiàn)嚴重污染.

某城市空氣質(zhì)量監(jiān)測部門對近300天空氣中濃度進行統(tǒng)計,得出這300天濃度的頻率分布直方圖如圖,將濃度落入各組的頻率視為概率,并假設(shè)每天的濃度相互獨立.

(1)求當(dāng)?shù)乇O(jiān)測部門發(fā)布顏色預(yù)警的概率;

(2)據(jù)當(dāng)?shù)乇O(jiān)測站數(shù)據(jù)顯示未來4天將出現(xiàn)3天嚴重污染,求監(jiān)測部門發(fā)布紅色預(yù)警的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)f(x)=Asin(ωx+φ),(A>0,ω>0,|φ|< )的一段圖象如圖所示

(1)求f(x)的解析式;
(2)把f(x)的圖象向左至少平移多少個單位,才能使得到的圖象對應(yīng)的函數(shù)為偶函數(shù)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2016年春節(jié),“搶紅包”成為社會熱議的話題之一.某機構(gòu)對春節(jié)期間用戶利用手機“搶紅包”的情況進行調(diào)查,如果一天內(nèi)搶紅包的總次數(shù)超過10次為“關(guān)注點高”,否則為“關(guān)注點低”,調(diào)查情況如下表所示:

(1)填寫上表中x,y的值并判斷是否有95%以上的把握認為性別與關(guān)注點高低有關(guān)?

(2)現(xiàn)要從上述男性用戶中隨機選出3名參加一項活動,以X表示選中的同學(xué)中搶紅包總次數(shù)超過10次的人數(shù),求隨機變量X的分布列及數(shù)學(xué)期望E(X).

下面的臨界值表供參考:

獨立性檢驗統(tǒng)計量,其中n=a+b+c+d.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱錐P﹣ABC中,AB⊥平面PAC,∠APC=90°,E是AB的中點,M是CE的中點,N點在PB上,且4PN=PB.
(Ⅰ)證明:平面PCE⊥平面PAB;
(Ⅱ)證明:MN∥平面PAC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】把不等式組 的解集表示在數(shù)軸上,正確的是( 。
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,底面是邊長為的正方形,側(cè)面

底面,且、分別為的中點.

1)求證: 平面;

2)求證:面平面;

3)在線段上是否存在點,使得二面角的余弦值為?說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)數(shù)列是首項為0的遞增數(shù)列, ,滿足:對于任意的總有兩個不同的根,則的通項公式為_________

查看答案和解析>>

同步練習(xí)冊答案