【題目】已知直線l、m,平面αβ,下列命題正確的是 (  )

A. lβ,lααβ

B. lβ,mβ,lαmααβ

C. lm,lαmβαβ

D. lβ,mβlα,mαlmMαβ

【答案】D

【解析】如右圖所示,在長方體ABCD-A1B1C1D1中,直線ABCD,則直線AB平面DC1,直線AB平面AC,但是平面AC與平面DC1不平行,所以選項A錯誤;取BB1的中點E,CC1的中點F,則可證EF平面AC,B1C1平面AC.又EF平面BC1,B1C1平面BC1,但是平面AC與平面BC1不平行,所以選項B錯誤;直線AD∥B1C1,AD平面AC,B1C1平面BC1,但平面AC與平面BC1不平行,所以選項C錯誤;很明顯選項D是兩個平面平行的判定定理,所以選項D正確.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知冪函數(shù)f(x)=x (m∈N*)的圖象關(guān)于y軸對稱,且在(0,+∞)上是減函數(shù),求滿足(a+1) <(3-2a) 的a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】據(jù)市場分析,南雄市精細(xì)化工園某公司生產(chǎn)一種化工產(chǎn)品,當(dāng)月產(chǎn)量在10噸至25噸時,月生產(chǎn)總成本y(萬元)可以看成月產(chǎn)量x()的二次函數(shù);當(dāng)月產(chǎn)量為10噸時,月總成本為20萬元;當(dāng)月產(chǎn)量為15噸時,月總成本最低為17.5萬元,為二次函數(shù)的頂點.寫出月總成本y(萬元)關(guān)于月產(chǎn)量x()的函數(shù)關(guān)系.已知該產(chǎn)品銷售價為每噸1.6萬元,那么月產(chǎn)量為多少時,可獲最大利潤?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義在上的函數(shù),如果對任意的,都有成立,則稱階伸縮函數(shù).

)若函數(shù)為二階伸縮函數(shù),且當(dāng)時, ,求的值.

)若為三階伸縮函數(shù),且當(dāng)時, ,求證:函數(shù)上無零點.

)若函數(shù)階伸縮函數(shù),且當(dāng)時, 的取值范圍是,求上的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】有甲、乙兩種商品,經(jīng)營銷售這兩種商品所得的利潤依次為M萬元和N萬元,它們與投入資金萬元的關(guān)系可由經(jīng)驗公式給出:M=,N= (≥1).今有8萬元資金投入經(jīng)營甲、乙兩種商品,且乙商品至少要求投資1萬元,

設(shè)投入乙種商品的資金為萬元,總利潤;

2)為獲得最大利潤,對甲、乙兩種商品的資金投入分別是多少?共能獲得多大利潤?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】正方體中, 分別是的中點.

(1)證明:平面平面

(2)在上求一點,使得平面

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知四邊形為直角梯形,,,,,中點,,交于點,沿將四邊形折起,連接

(1)求證:平面;

(2)若平面平面

(I)求二面角的平面角的大;

(II)線段上是否存在點,使平面,若存在,求出的值,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】制定投資計劃時,不僅要考慮可能獲得的盈利,而且要考慮可能出現(xiàn)的虧損.某投資人打算投資甲、乙兩個項目.根據(jù)預(yù)測,甲、乙項目可能的最大盈利率分別為100%50%,可能的最大虧損分別為30%10%.投資人計劃投資金額不超過10萬元,要求確?赡艿馁Y金虧損不超過1.8萬元.問投資人對甲、乙兩個項目各投資多少萬元,才能使可能的盈利最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】交強險是車主必須為機動車購買的險種,若普通6座以下私家車投保交強險第一年的費用(基準(zhǔn)保費)統(tǒng)一為元,在下一年續(xù)保時,實行的是費率浮動機制,保費與上一年度車輛發(fā)生道路交通事故的情況相聯(lián)系,發(fā)生交通事故的次數(shù)越多,費率也就是越高,具體浮動情況如下表:

交強險浮動因素和浮動費率比率表

浮動因素

浮動比率

上一個年度未發(fā)生有責(zé)任道路交通事故

下浮10%

上兩個年度未發(fā)生有責(zé)任道路交通事故

下浮20%

上三個及以上年度未發(fā)生有責(zé)任道路交通事故

下浮30%

上一個年度發(fā)生一次有責(zé)任不涉及死亡的道路交通事故

0%

上一個年度發(fā)生兩次及兩次以上有責(zé)任道路交通事故

上浮10%

上一個年度發(fā)生有責(zé)任道路交通死亡事故

上浮30%

某機構(gòu)為了 某一品牌普通6座以下私家車的投保情況,隨機抽取了60輛車齡已滿三年的該品牌同型號私家車的下一年續(xù)保時的情況,統(tǒng)計得到了下面的表格:

類型

數(shù)量

10

5

5

20

15

5

以這60輛該品牌車的投保類型的頻率代替一輛車投保類型的概率,完成下列問題:

(1)按照我國《機動車交通事故責(zé)任強制保險條例》汽車交強險價格的規(guī)定, ,記為某同學(xué)家的一輛該品牌車在第四年續(xù)保時的費用,求的分布列與數(shù)學(xué)期望;(數(shù)學(xué)期望值保留到個位數(shù)字)

(2)某二手車銷售商專門銷售這一品牌的二手車,且將下一年的交強險保費高于基本保費的車輛記為事故車,假設(shè)購進(jìn)一輛事故車虧損5000元,一輛非事故車盈利10000元:

①若該銷售商購進(jìn)三輛(車齡已滿三年)該品牌二手車,求這三輛車中至多有一輛事故車的概率;

②若該銷售商一次購進(jìn)100輛(車齡已滿三年)該品牌二手車,求他獲得利潤的期望值.

查看答案和解析>>

同步練習(xí)冊答案