9.在正方形ABCD中,邊長為1,$\overrightarrow{AB}$=$\overrightarrow{a}$,$\overrightarrow{BC}$=$\overrightarrow$,則|$\overrightarrow{a}$$+\overrightarrow$|=$\sqrt{2}$.

分析 由正方形的性質(zhì)可得:$\overrightarrow{a}⊥\overrightarrow$,$\overrightarrow{a}•\overrightarrow$=0.利用|$\overrightarrow{a}$$+\overrightarrow$|=$\sqrt{{\overrightarrow{a}}^{2}+{\overrightarrow}^{2}}$即可的.

解答 解:由正方形的性質(zhì)可得:$\overrightarrow{a}⊥\overrightarrow$,∴$\overrightarrow{a}•\overrightarrow$=0.
∴|$\overrightarrow{a}$$+\overrightarrow$|=$\sqrt{{\overrightarrow{a}}^{2}+{\overrightarrow}^{2}}$=$\sqrt{2}$.
故答案為:$\sqrt{2}$.

點評 本題考查了向量的數(shù)量積運算性質(zhì)、向量垂直與數(shù)量積的關(guān)系、正方形的性質(zhì),考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知等比數(shù)列{an}滿足:a1+a3=10,a4+a6=$\frac{5}{4}$,則{an}的通項公式an=( 。
A.$\frac{1}{{2}^{n-4}}$B.$\frac{1}{{2}^{n-3}}$C.$\frac{1}{{2}^{n-3}}$+4D.$\frac{1}{{2}^{n-2}}$+6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知f(x)=ex-ax.
(1)若對一切x∈R,f(x)≥1恒成立,求實數(shù)a的取值集合;
(2)若方程f(x)=a(lnx-x+1)(a>0)有兩個不等的實數(shù)根,x1,x2(0<x1<x2),求證:$\frac{1}{a}$<x1<1<x2<a.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知橢圓3x2+y2=12,過原點且傾斜角分別為θ和π-θ(0<θ≤$\frac{π}{4}$)的兩條直線分別交橢圓于點A,C和點B,D,則四邊形ABCD的面積的最大值等于12,此時θ=$\frac{π}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.計算$\frac{tan40°+tan80°+tan240°}{tan40°tan80°}$=$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知f(x)=ax2+bx+c,且滿足f(-1)=f(4)=0,f(0)=-4.
(1)求f(x)的解析式;
(2)解不等式f(x)≥0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.計算:sin(-$\frac{11π}{6}$)+cos$\frac{27}{7}π$•tan4π-cos$\frac{19π}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知tanα=-$\sqrt{3}$.
(1)當(dāng)α為第二象限時,求sinα,cosα;
(2)求sinα,cosα.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知數(shù)列{an}的前n項和為Sn,且對任意正整數(shù)n都有an=(-1)nSn+pn(p為常數(shù),p≠0).
(1)求p的值;
(2)求數(shù)列{an}的通項公式;
(3)設(shè)集合An={a2n-1,a2n},且bn,cn∈An,記數(shù)列{nbn},{ncn}的前n項和分別為Pn,Qn,若b1≠c1,求證:對任意n∈N,Pn≠Q(mào)n

查看答案和解析>>

同步練習(xí)冊答案