【題目】已知△ABC的角A、B、C所對(duì)的邊分別是a、b、c,設(shè)向量 , , .
(1)若 ∥ ,求證:△ABC為等腰三角形;
(2)若 ⊥ ,邊長c=2,角C= ,求△ABC的面積.
【答案】
(1)證明:∵m∥n
∴asinA=bsinB
即a =b .其中R為△ABC外接圓半徑.
∴a=b
∴△ABC為等腰三角形
(2)證明:由題意,mp=0
∴a(b﹣2)+b(a﹣2)=0
∴a+b=ab
由余弦定理4=a2+b2﹣2abcos
∴4=a2+b2﹣ab=(a+b)2﹣3ab
∴(ab)2﹣3ab﹣4=0
∴ab=4或ab=﹣1(舍去)
∴S△ABC= absinC
= ×4×sin =
【解析】(1)利用向量平行的條件,寫出向量平行坐標(biāo)形式的條件,得到關(guān)于三角形的邊和角之間的關(guān)系,利用余弦定理變形得到三角形是等腰三角形.(2)利用向量垂直數(shù)量積為零,寫出三角形邊之間的關(guān)系,結(jié)合余弦定理得到求三角形面積所需的兩邊的乘積的值,求出三角形的面積.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的中心在原點(diǎn),焦點(diǎn)在軸上,離心率.以兩個(gè)焦點(diǎn)和短軸的兩個(gè)端點(diǎn)為頂點(diǎn)的四邊形的周長為8,面積為.
(Ⅰ)求橢圓的方程;
(Ⅱ)若點(diǎn)為橢圓上一點(diǎn),直線的方程為,求證:直線與橢圓有且只有一個(gè)交點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的焦點(diǎn)在軸上,且橢圓的焦距為2.
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)過點(diǎn)的直線與橢圓交于兩點(diǎn),過作軸且與橢圓交于另一點(diǎn), 為橢圓的右焦點(diǎn),求證:三點(diǎn)在同一條直線上.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了讓學(xué)生了解環(huán)保知識(shí),增強(qiáng)環(huán)保意識(shí),某中學(xué)舉行了一次“環(huán)保知識(shí)競賽”,共有800名學(xué)生參加了這次競賽.為了解本次競賽成績情況,從中抽取了部分學(xué)生的成績進(jìn)行統(tǒng)計(jì). 請(qǐng)你根據(jù)尚未完成并有局部污損的頻率分布表和頻率分布直方圖,解答下列問題:
分組 | 頻數(shù) | 頻率 |
50.5~60.5 | 6 | 0.08 |
60.5~70.5 | 0.16 | |
70.5~80.5 | 15 | |
80.5~90.5 | 24 | 0.32 |
90.5~100.5 | ||
合計(jì) | 75 | 1.00 |
(1)填充頻率分布表的空格;
(2)補(bǔ)全頻率分布直方圖;
(3)根據(jù)頻率分布直方圖求此次“環(huán)保知識(shí)競賽”的平均分為多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=cosωx(sinωx+ cosωx)(ω>0),如果存在實(shí)數(shù)x0 , 使得對(duì)任意的實(shí)數(shù)x,都有f(x0)≤f(x)≤f(x0+2016π)成立,則ω的最小值為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知 , 為不共共線的非零向量,且| |=| |=1,則以下四個(gè)向量中模最大者為( )
A. +
B. +
C. +
D. +
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,若acos2 +ccos2 = b,那么a,b,c的關(guān)系是( )
A.a+b=c
B.a+c=2b
C.b+c=2a
D.a=b=c
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一組數(shù)據(jù)的平均數(shù)是2.8,方差是3.6,若將這組數(shù)據(jù)中的每一個(gè)數(shù)據(jù)都加上60,得到一組新數(shù)據(jù),則所得新數(shù)據(jù)的平均數(shù)和方差分別是( )
A.57.2,3.6
B.57.2,56.4
C.62.8,63.6
D.62.8,3.6
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,底面ABCD是正方形,側(cè)棱PD⊥底面ABCD,PD=DC,E是PC的中點(diǎn),作EF⊥PB交PB于點(diǎn)F.
(1)證明PA∥平面EDB;
(2)證明PB⊥平面EFD;
(3)求二面角C﹣PB﹣D的大。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com