【題目】在△ABC中,若acos2 +ccos2 = b,那么a,b,c的關(guān)系是(
A.a+b=c
B.a+c=2b
C.b+c=2a
D.a=b=c

【答案】B
【解析】解:把a(bǔ)cos2 +ccos2 = b,化簡(jiǎn)得:a(1+cosC)+c(1+cosA)=3b, 由正弦定理得:sinA(1+cosC)+sinC(1+cosA)=3sinB,
整理得:sinA+sinAcosC+sinC+cosAsinC=3sinB,
即sinA+sinC+sin(A+C)=3sinB,
∵sin(A+C)=sinB,
∴sinA+sinC+sinB=3sinB,
即sinA+sinC=2sinB,
則由正弦定理化簡(jiǎn)得,a+c=2b.
故選:B.
【考點(diǎn)精析】認(rèn)真審題,首先需要了解正弦定理的定義(正弦定理:),還要掌握余弦定理的定義(余弦定理:;;)的相關(guān)知識(shí)才是答題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示的幾何體,關(guān)于其結(jié)構(gòu)特征,下列說法不正確的是(  )

A.該幾何體是由兩個(gè)同底的四棱錐組成的幾何體
B.該幾何體有12條棱、6個(gè)頂點(diǎn)
C.該幾何體有8個(gè)面,并且各面均為三角形
D.該幾何體有9個(gè)面,其中一個(gè)面是四邊形,其余均為三角形

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】閱讀如圖所示的程序框圖,運(yùn)行相應(yīng)的程序,則輸出的s值等于

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知△ABC的角A、B、C所對(duì)的邊分別是a、b、c,設(shè)向量 ,
(1)若 ,求證:△ABC為等腰三角形;
(2)若 ,邊長(zhǎng)c=2,角C= ,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若0<α< ,﹣ <β<0,cos( +α)= ,cos( )= ,則cos(α+ )=(
A.
B.﹣
C.
D.﹣

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).()

(Ⅰ)討論的單調(diào)性;

(Ⅱ)若恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】本著健康、低碳的生活理念,租自行車騎游的人越來越多.某自行車租車點(diǎn)的收費(fèi)標(biāo)準(zhǔn)是每年每次租時(shí)間不超過兩小時(shí)免費(fèi),超過兩個(gè)小時(shí)的部分每小時(shí)收費(fèi)2元(不足1小時(shí)的部分按1小時(shí)計(jì)算).現(xiàn)有甲、乙兩人獨(dú)立來該租車點(diǎn)租車騎游(各租一車一次).設(shè)甲、乙不超過兩小時(shí)還車的概率分別為, ;兩小時(shí)以上且不超過三小時(shí)還車的概率為, ;兩人租車時(shí)間都不會(huì)超過四小時(shí).

(1)求甲、乙都在三到四小時(shí)內(nèi)還車的概率和甲、乙兩人所付租車費(fèi)相同的概率;

(2)設(shè)甲、乙兩人所付的租車費(fèi)用之和為隨機(jī)變量,求的分布列與數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校高一 、高二 、高三三個(gè)年級(jí)共有 名教師,為調(diào)查他們的備課時(shí)間情況,通過分層

抽樣獲得了名教師一周的備課時(shí)間 ,數(shù)據(jù)如下表(單位 :小時(shí)):

高一年級(jí)

高二年級(jí)

高三年級(jí)

(1)試估計(jì)該校高三年級(jí)的教師人數(shù) ;

(2)從高一年級(jí)和高二年級(jí)抽出的教師中,各隨機(jī)選取一人,高一年級(jí)選出的人記為甲 ,高二年級(jí)選出的人記為乙 ,求該周甲的備課時(shí)間不比乙的備課時(shí)間長(zhǎng)的概率 ;

(3)再?gòu)母咭弧⒏叨、高三三個(gè)年級(jí)中各隨機(jī)抽取一名教師,他們?cè)撝艿膫湔n時(shí)間分別是(單位: 小時(shí)),這三個(gè)數(shù)據(jù)與表格中的數(shù)據(jù)構(gòu)成的新樣本的平均數(shù)記為,表格中的數(shù)據(jù)平均數(shù)記為 ,試判斷的大小. (結(jié)論不要求證明)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某網(wǎng)絡(luò)營(yíng)銷部門為了統(tǒng)計(jì)某市網(wǎng)友20151111日在某網(wǎng)店的網(wǎng)購(gòu)情況,隨機(jī)抽查了該市100名網(wǎng)友的網(wǎng)購(gòu)金額情況,得到如下頻率分布直方圖.

1)估計(jì)直方圖中網(wǎng)購(gòu)金額的中位數(shù);

2)若規(guī)定網(wǎng)購(gòu)金額超過15千元的顧客定義為網(wǎng)購(gòu)達(dá)人,網(wǎng)購(gòu)金額不超過15千元的顧客定義為非網(wǎng)購(gòu)達(dá)人;若以該網(wǎng)店的頻率估計(jì)全市非網(wǎng)購(gòu)達(dá)人網(wǎng)購(gòu)達(dá)人的概率,從全市任意選取3人,則3人中非網(wǎng)購(gòu)達(dá)人網(wǎng)購(gòu)達(dá)人的人數(shù)之差的絕對(duì)值為,求的分布列與數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊(cè)答案