【題目】本著健康、低碳的生活理念,租自行車騎游的人越來越多.某自行車租車點的收費標準是每年每次租時間不超過兩小時免費,超過兩個小時的部分每小時收費2元(不足1小時的部分按1小時計算).現(xiàn)有甲、乙兩人獨立來該租車點租車騎游(各租一車一次).設甲、乙不超過兩小時還車的概率分別為 ;兩小時以上且不超過三小時還車的概率為 ;兩人租車時間都不會超過四小時.

(1)求甲、乙都在三到四小時內(nèi)還車的概率和甲、乙兩人所付租車費相同的概率;

(2)設甲、乙兩人所付的租車費用之和為隨機變量,求的分布列與數(shù)學期望.

【答案】1;(2)分布列見解析,數(shù)學期望是

【解析】試題分析:(1)首先求出兩個人租車時間超過三小時的概率,甲乙兩人所付的租車費用相同即租車時間相同:都不超過兩小時、都在兩小時以上且不超過三小時和都超過三小時三類求解即可.

2)隨機變量ξ的所有取值為02,46,8,由獨立事件的概率分別求概率,即可列出分布列.

試題解析:(1)由題意得,甲,乙在三小時以上且不超過四小時還車的概率分別為

記甲、乙兩人所付得租車費用相同為事件,則

所以,甲、乙兩人所付得租車費用相同的概率為

2)設甲、乙兩個所付的費用之和為, 可能取得值為02,4,68

,

,

分布列

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知單調(diào)遞增的等比數(shù)列{an}滿足:a2+a3+a4=28,且a3+2是a2 , a4的等差中項.
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)設bn=anlog an , 求數(shù)列{bn}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=cosωx(sinωx+ cosωx)(ω>0),如果存在實數(shù)x0 , 使得對任意的實數(shù)x,都有f(x0)≤f(x)≤f(x0+2016π)成立,則ω的最小值為(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在△ABC中,若acos2 +ccos2 = b,那么a,b,c的關系是(
A.a+b=c
B.a+c=2b
C.b+c=2a
D.a=b=c

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知等差數(shù)列{an}的前n項和為Sn(n∈N*),a3=5,S10=100.
(1)求數(shù)列{an}的通項公式;
(2)設bn=2 +2n求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】一組數(shù)據(jù)的平均數(shù)是2.8,方差是3.6,若將這組數(shù)據(jù)中的每一個數(shù)據(jù)都加上60,得到一組新數(shù)據(jù),則所得新數(shù)據(jù)的平均數(shù)和方差分別是(
A.57.2,3.6
B.57.2,56.4
C.62.8,63.6
D.62.8,3.6

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】是各項均不相等的數(shù)列, 為它的前項和,滿足.

(1)若,且成等差數(shù)列,求的值;

(2)若的各項均不相等,問當且僅當為何值時, 成等差數(shù)列?試說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列{an}的前n項和Sn=3n2+8n,{bn}是等差數(shù)列,且an=bn+bn+1
(Ⅰ)求數(shù)列{bn}的通項公式;
(Ⅱ)令cn= ,求數(shù)列{cn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在直角梯形ABCD中,AB∥CD,∠BCD=90°,BC=CD=2,AB=4,EC∥FD,F(xiàn)D⊥底面ABCD,M是AB的中點.

(1)求證:平面CFM⊥平面BDF;
(2)若點N為線段CE的中點,EC=2,F(xiàn)D=3,求證:MN∥平面BEF.

查看答案和解析>>

同步練習冊答案