已知底面邊長為1,側(cè)棱長為
2
的正四棱柱的各頂點均在同一球面上,則該球的體積為( 。
A、
32π
3
B、4π
C、2π
D、
4
3
π
考點:球的體積和表面積
專題:計算題,空間位置關(guān)系與距離
分析:由長方體的對角線公式,算出正四棱柱體對角線的長,從而得到球直徑長,得球半徑R=1,最后根據(jù)球的體積公式,可算出此球的體積.
解答: 解:∵正四棱柱的底面邊長為1,側(cè)棱長為
2
,
∴正四棱柱體對角線的長為
1+1+2
=2
又∵正四棱柱的頂點在同一球面上,
∴正四棱柱體對角線恰好是球的一條直徑,得球半徑R=1
根據(jù)球的體積公式,得此球的體積為V=
4
3
πR3=
4
3
π.
故選:D.
點評:本題給出球內(nèi)接正四棱柱的底面邊長和側(cè)棱長,求該球的體積,考查了正四棱柱的性質(zhì)、長方體對角線公式和球的體積公式等知識,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2x3-3x.
(Ⅰ)求f(x)在區(qū)間[-2,1]上的最大值;
(Ⅱ)若過點P(1,t)存在3條直線與曲線y=f(x)相切,求t的取值范圍;
(Ⅲ)問過點A(-1,2),B(2,10),C(0,2)分別存在幾條直線與曲線y=f(x)相切?(只需寫出結(jié)論)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在以O(shè)為極點的極坐標系中,圓ρ=4sinθ和直線ρsinθ=a相交于A、B兩點,若△AOB是等邊三角形,則a的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C:
x2
9
+
y2
4
=1,點M與C的焦點不重合,若M關(guān)于C的焦點的對稱點分別為A、B,線段MN的中點在C上,則|AN|+|BN|=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
6
x
-log2x,在下列區(qū)間中,包含f(x)零點的區(qū)間是( 。
A、(0,1)
B、(1,2)
C、(2,4)
D、(4,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列各組函數(shù)y=f(x)與y=g(x)在交點處有共同切線的是(  )
①f(x)=x2-1,g(x)=lnx
②f(x)=3x2+1,g(x)=x3+3x
③f(x)=(x+1)2,g(x)=ex
④f(x)=
x
,g(x)=
e
2
lnx.
A、①②B、②④C、②③D、③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

學(xué)生的語文、數(shù)學(xué)成績均被評定為三個等級,依次為“優(yōu)秀”“合格”“不合格”.若學(xué)生甲的語文、數(shù)學(xué)成績都不低于學(xué)生乙,且其中至少有一門成績高于乙,則稱“學(xué)生甲比學(xué)生乙成績好”.如果一組學(xué)生中沒有哪位學(xué)生比另一位學(xué)生成績好,并且不存在語文成績相同、數(shù)學(xué)成績也相同的兩位學(xué)生,則這一組學(xué)生最多有(  )
A、2人B、3人C、4人D、5人

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在四棱錐A-BCDE中,平面ABC⊥平面BCDE,∠CDE=∠BED=90°,AB=CD=2,DE=BE=1,AC=
2

(Ⅰ)證明:AC⊥平面BCDE;
(Ⅱ)求直線AE與平面ABC所成的角的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

等差數(shù)列{an}的前n項和為Sn.已知a1=10,a2為整數(shù),且Sn≤S4
(Ⅰ)求{an}的通項公式;
(Ⅱ)設(shè)bn=
1
anan+1
,求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

同步練習(xí)冊答案