【題目】已知函數(shù)f(x)= x2﹣(2a+2)x+(2a+1)lnx
(1)若曲線y=f(x)在點(2,f(2))處的切線的斜率小于0,求f(x)的單調區(qū)間;
(2)對任意的a∈[ , ],x1 , x2∈[1,2](x1≠x2),恒有|f(x1)﹣f(x2)|<λ| |,求正數(shù)λ的取值范圍.

【答案】
(1)解:函數(shù)f(x)= x2﹣(2a+2)x+(2a+1)lnx的導數(shù)

f′(x)=x﹣(2a+2)+ = ,x>0,

由題意可得f′(2)= <0,可得a> ,2a+1>2>1,

由f′(x)>0,可得x>2a+1或0<x<1;f′(x)<0,可得1<x<2a+1.

即有f(x)的增區(qū)間為(0,1),(2a+1,+∞);減區(qū)間為(1,2a+1);


(2)解:由a∈[ ],可得2a+1∈[4,6],

由(1)可得f(x)在[1,2]遞減.

設1≤x1<x2≤2,即有f(x1)>f(x2), ,

原不等式即為f(x1)﹣λ <f(x2)﹣λ

對任意的a∈[ , ],x1,x2∈[1,2]恒成立,

令g(x)=f(x)﹣ ,即有g(x1)<g(x2),即為g(x)在[1,2]遞增,

即有g′(x)≥0對任意的a∈[ , ],x1,x2∈[1,2]恒成立,

即x﹣(2a+2)+ + ≥0,即為x3﹣(2a+2)x2+(2a+1)x+λ≥0,

則(2x﹣2x2)a+x3﹣2x2+x+λ≥0,a∈[ , ],

由x∈[1,2],可得2x﹣2x2≤0,只需 (2x﹣2x2)a+x3﹣2x2+x+λ≥0.

即x3﹣7x2+6x+λ≥0對x∈[1,2]恒成立,

令h(x)=x3﹣7x2+6x+λ,h′(x)=3x2﹣14x+6≤0在1≤x≤2恒成立,

則有h(x)在[1,2]遞減,可得h(2)取得最小值,且為﹣8+λ≥0,

解得λ≥8.即有正數(shù)λ的取值范圍是[8,+∞).


【解析】(1)求出函數(shù)的導數(shù),并分解因式,由題意可得f′(2)= <0,再由導數(shù)大于0,可得增區(qū)間,導數(shù)小于0,可得減區(qū)間,注意定義域;(2)求出2a+1的范圍,可得f(x)在[1,2]遞減,由題意可得原不等式即為f(x1)﹣λ <f(x2)﹣λ
對任意的a∈[ ],x1 , x2∈[1,2]恒成立,令g(x)=f(x)﹣ ,即有g(x1)<g(x2),即為g(x)在[1,2]遞增,求出g(x)的導數(shù),令導數(shù)大于等于0,再由一次函數(shù)的單調性可得只需 (2x﹣2x2)a+x3﹣2x2+x+λ≥0.即x3﹣7x2+6x+λ≥0對x∈[1,2]恒成立,令h(x)=x3﹣7x2+6x+λ,求出導數(shù),求得單調區(qū)間和最小值,解不等式即可得到所求范圍.
【考點精析】掌握利用導數(shù)研究函數(shù)的單調性是解答本題的根本,需要知道一般的,函數(shù)的單調性與其導數(shù)的正負有如下關系: 在某個區(qū)間內,(1)如果,那么函數(shù)在這個區(qū)間單調遞增;(2)如果,那么函數(shù)在這個區(qū)間單調遞減.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】在“新零售”模式的背景下,某大型零售公司為推廣線下分店,計劃在S市的A區(qū)開設分店.為了確定在該區(qū)開設分店的個數(shù),該公司對該市已開設分店的其他區(qū)的數(shù)據(jù)作了初步處理后得到下列表格.記x表示在各區(qū)開設分店的個數(shù),y表示這x個分店的年收入之和.

x(個)

2

3

4

5

6

y(百萬元)

2.5

3

4

4.5

6

(1)在年收入之和為2.5(百萬元)和3(百萬元)兩區(qū)中抽取兩分店調查,求這兩分店來自同一區(qū)的概率

(2)該公司已經(jīng)過初步判斷,可用線性回歸模型擬合yx的關系,求y關于x的線性回歸方程;

(3)假設該公司在A區(qū)獲得的總年利潤z(單位:百萬元)與x,y之間的關系為zy-0.05x2-1.4,請結合(1)中的線性回歸方程,估算該公司應在A區(qū)開設多少個分店,才能使A區(qū)平均每個分店的年利潤最大?

參考公式:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】數(shù)列{an}的前n項和Sn=2n+1,
(1)求{an}的通項公式
(2)設bn=log2an+2 , 求 的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)= ,且函數(shù)g(x)=loga(x2+x+2)(a>0,且a≠1)在[﹣ ,1]上的最大值為2,若對任意x1∈[﹣1,2],存在x2∈[0,3],使得f(x1)≥g(x2),則實數(shù)m的取值范圍是(
A.(﹣∞,﹣ ]
B.(﹣∞, ]
C.[ ,+∞)
D.[﹣ ,+∞]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】PM2.5是指大氣中直徑小于或等于2.5微米的顆粒物,也稱為可入肺顆粒物,我國PM2.5標準采用世界衛(wèi)生組織設定的最寬限值,PM2.5日均值在35微克/立方米以下空氣質量為一級;35微克/立方米~75微克/立方米之間空氣質量為二級;75微克/立方米及其以上空氣質量為超標.

某試點城市環(huán)保局從該市市區(qū)2016年全年每天的PM2.5監(jiān)測數(shù)據(jù)中隨機抽取6天的數(shù)據(jù)作為樣本,監(jiān)測值莖葉圖(十位為莖,個位為葉)如圖所示,若從這6天的數(shù)據(jù)中隨機抽出2,

(1)求恰有一天空氣質量超標的概率;

(2)求至多有一天空氣質量超標的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】將紅、黑、藍、白5張紙牌(其中白紙牌有2張)隨機分發(fā)給甲、乙、丙、丁4個人,每人至少分得1張,則下列兩個事件為互斥事件的是( )

A. 事件“甲分得1張白牌”與事件“乙分得1張紅牌”

B. 事件“甲分得1張紅牌”與事件“乙分得1張藍牌”

C. 事件“甲分得1張白牌”與事件“乙分得2張白牌”

D. 事件“甲分得2張白牌”與事件“乙分得1張黑牌”

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】求函數(shù)y=的值的程序框圖如圖所示.

(1)指出程序框圖中的錯誤,并寫出算法;

(2)重新繪制解決該問題的程序框圖,并回答下面提出的問題.

要使輸出的值為正數(shù),輸入的x的值應滿足什么條件?

要使輸出的值為8,輸入的x值應是多少?

要使輸出的y值最小,輸入的x值應是多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,四棱錐,側面是邊長為2的正三角形,且平面平面,底面是菱形,且 為棱上的動點,且.

(1)求證: ;

(2)試確定的值,使得二面角的余弦值為.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù)y=f(x)滿足f(﹣x)+f(x)=0且f(x+1)=f(x﹣1),若x∈(0,1)時,f(x)=log2 ,則y=f(x)在(1,2)內是(
A.單調增函數(shù),且f(x)<0
B.單調減函數(shù),且f(x)<0
C.單調增函數(shù),且f(x)>0
D.單調增函數(shù),且f(x)>0

查看答案和解析>>

同步練習冊答案