精英家教網 > 高中數學 > 題目詳情
在正方體ABCD-A′B′C′D′中,過對角線BD′的一個平面交AA′于E,交CC′于F,則
①四邊形BFD′E一定是平行四邊形;
②四邊形BFD′E有可能是正方形;
③四邊形BFD′E在底面ABCD內的投影一定是正方形;
④平面BFD′E有可能垂直于平面BB′D.
以上結論正確的為    .(寫出所有正確結論的編號)
【答案】分析:由平行平面的性質可得①是正確的,當E、F為棱中點時,四邊形為菱形,但不可能為正方形,故③④正確,②錯誤.
解答:解:
①:∵平面AB′∥平面DC′,平面BFD′E∩平面AB′=EB,平面BFD′E∩平面DC′=D′F,∴EB∥D′F,同理可證:D′E∥FB,故四邊形BFD′E一定是平行四邊形,即①正確;
②:當E、F為棱中點時,四邊形為菱形,但不可能為正方形,故②錯誤;
③:四邊形BFD′E在底面ABCD內的投影為四邊形ABCD,所以一定是正方形,即③正確;
④:當E、F為棱中點時,EF⊥平面BB′D,又∵EF?平面BFD′E,∴此時:平面BFD′E⊥平面BB′D,即④正確.
故答案為:①③④
點評:本題主要考查了空間中直線與直線之間的位置關系,空間中直線與平面之間的位置關系,平面與平面之間的位置關系,考查空間想象能力和思維能力.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

16、在正方體ABCD-A′B′C′D′中,過對角線BD′的一個平面交AA′于E,交CC′于F,則
①四邊形BFD′E一定是平行四邊形;
②四邊形BFD′E有可能是正方形;
③四邊形BFD′E在底面ABCD內的投影一定是正方形;
④平面BFD′E有可能垂直于平面BB′D.
以上結論正確的為
①③④
.(寫出所有正確結論的編號)

查看答案和解析>>

科目:高中數學 來源: 題型:

如圖,在正方體ABCD-A′B′C′D′中,E為D′C′的中點,則二面角E-AB-C的大小為
45°
45°

查看答案和解析>>

科目:高中數學 來源: 題型:

如圖,在正方體ABCD-A′B′C′D′中,E,F分別是AB′,BC′的中點. 
(1)若M為BB′的中點,證明:平面EMF∥平面ABCD.
(2)求異面直線EF與AD′所成的角.

查看答案和解析>>

科目:高中數學 來源: 題型:

如圖在正方體ABCD-A  1B1C1D1中,O是底面ABCD的中心,B1H⊥D1O,H為垂足,則B1H與平面AD1C的位置關系是( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

在正方體ABCD-A′B′C′D′中,過對角線BD′的一個平面交棱AA′于E,交棱CC′于F,則:
①四邊形BFD′E一定是平行四邊形;
②四邊形BFD′E有可能是正方形;
③四邊形BFD′E有可能是菱形;
④四邊形BFD′E有可能垂直于平面BB′D.
其中所有正確結論的序號是
 

查看答案和解析>>

同步練習冊答案