【題目】已知拋物線的焦點為F,直線l過點.
(1)若點F到直線l的距離為,求直線l的斜率;
(2)設(shè)A,B為拋物線上兩點,且AB不與x軸垂直,若線段AB的垂直平分線恰過點M,求證:線段AB中點的橫坐標(biāo)為定值
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(1)求證:正三角形各頂點到其外接圓上任一切線的距離之和為定值;
(2)猜想空間命題“正四面體各頂點到其外接球的任一切面的距離之和為定值”是否成立?證明你的結(jié)論.注:與球只有一個公共點的平面叫做球的切面,這個公共點叫做切點,切點與球心的連線垂直于切面.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,將橢圓上每一點的橫坐標(biāo)保持不變,縱坐標(biāo)變?yōu)樵瓉淼囊话,得曲線C,以坐標(biāo)原點為極點,x軸正半軸為極軸建立極坐標(biāo)系,直線l的極坐標(biāo)方程為.
寫出曲線C的普通方程和直線l的直角坐標(biāo)方程;
已知點且直線l與曲線C交于A、B兩點,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于的說法,正確的是( )
A.展開式中的二項式系數(shù)之和為1024B.展開式中第6項的二項式系數(shù)最大
C.展開式中第5項和第7項的二項式系數(shù)最大D.展開式中第6項的系數(shù)最小
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】蚌埠市某中學(xué)高三年級從甲(文)、乙(理)兩個科組各選出名學(xué)生參加高校自主招生數(shù)學(xué)選拔考試,他們?nèi)〉玫某煽兊那o葉圖如圖所示,其中甲組學(xué)生的平均分是,乙組學(xué)生成績的中位數(shù)是.
(1)求和的值;
(2)計算甲組位學(xué)生成績的方差;
(3)從成績在分以上的學(xué)生中隨機(jī)抽取兩名學(xué)生,求甲組至少有一名學(xué)生的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校在高二數(shù)學(xué)競賽初賽后,對90分及以上的成績進(jìn)行統(tǒng)計,其頻率分布直方圖如圖所示,若分?jǐn)?shù)段的參賽學(xué)生人數(shù)為2.
(1)求該校成績在分?jǐn)?shù)段的參賽學(xué)生人數(shù);
(2)估計90分及以上的學(xué)生成績的眾數(shù)、中位數(shù)和平均數(shù)(結(jié)果保留整數(shù))
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在某次投籃測試中,有兩種投籃方案:方案甲:先在A點投籃一次,以后都在B點投籃;方案乙:始終在B點投籃.每次投籃之間相互獨立.某選手在A點命中的概率為,命中一次記3分,沒有命中得0分;在B點命中的概率為,命中一次記2分,沒有命中得0分,用隨機(jī)變量表示該選手一次投籃測試的累計得分,如果的值不低于3分,則認(rèn)為其通過測試并停止投籃,否則繼續(xù)投籃,但一次測試最多投籃3次.
(1)若該選手選擇方案甲,求測試結(jié)束后所得分的分布列和數(shù)學(xué)期望.
(2)試問該選手選擇哪種方案通過測試的可能性較大?請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,某地有三家工廠,分別位于矩形ABCD的頂點A,B以及CD的中點P處,已知AB=20km,CB=10km,為了處理三家工廠的污水,現(xiàn)要在矩形ABCD內(nèi)(含邊界),且與A,B等距離的一點O處建造一個污水處理廠,并鋪設(shè)排污管道AO,BO,OP,設(shè)排污管道的總長為km.
(I)設(shè),將表示成的函數(shù)關(guān)系式;
(II)確定污水處理廠的位置,使三條排污管道的總長度最短,并求出最短值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com