【題目】2017年《詩詞大會》火爆熒屏,某校為此舉辦了一場主題為“愛詩詞、愛祖國”的詩詞知識競賽,從參賽的全體學(xué)生中抽出60人的成績(滿分100分)作為樣本.對這60名學(xué)生的成績進行統(tǒng)計,并按, , 分組,得到如圖所示的頻率分布直方圖.

(Ⅰ)若同一組數(shù)據(jù)用該組區(qū)間的中點值代表,估計參加這次知識競賽的學(xué)生的平均成績;

(Ⅱ)估計參加這次知識競賽的學(xué)生成績的中位數(shù)(結(jié)果保留一位小數(shù));

(Ⅲ)若規(guī)定80分以上(含80分)為優(yōu)秀,用頻率估計概率,從全體參賽學(xué)生中隨機抽取3名,記其中成績優(yōu)秀的人數(shù)為,求的分布列與期望.

【答案】(1) 72.5分;(2) 73.3分;

(3) 的分布列為

0

1

2

3

.

【解析】試題分析:(1)由頻率分布直方圖可知: .即參賽學(xué)生的平均成績?yōu)?2.5分;(2)由題意易知服從二項分布,易得分布列與期望.

試題解析:

(Ⅰ)設(shè)樣本數(shù)據(jù)的平均數(shù)為,則.則估計參賽學(xué)生的平均成績?yōu)?2.5分.

(Ⅱ)設(shè)樣本數(shù)據(jù)的中位數(shù)為,由.則,解得,故估計參加這次知識競賽的學(xué)生成績的中位數(shù)約為73.3分.

(Ⅲ)由題意知,樣本中80分以上(包括80分)的概率為,則隨機抽取一名學(xué)生的成績是優(yōu)秀的概率為,∴.∴, ; ; ,故的分布列為

0

1

2

3

.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在長方體中, 與平面及平面所成角分別為, , 分別為的中點,且.

(1)求證: 平面;

(2)求二面角的平面角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知a>0,求證: ≥a+ ﹣2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知某中學(xué)高三文科班學(xué)生共有人參加了數(shù)學(xué)與地理的水平測試,現(xiàn)學(xué)校決定利用隨機數(shù)表法從中抽取人進行成績抽樣統(tǒng)計,先將人按進行編號.

(Ⅰ)如果從第行第列的數(shù)開始向右讀,請你依次寫出最先檢測的個人的編號;(下面摘取了第行 至第行)

(Ⅱ)抽的人的數(shù)學(xué)與地理的水平測試成績?nèi)缦卤恚?/span>

人數(shù)

數(shù)學(xué)

優(yōu)秀

良好

及格

優(yōu)秀

7

20

5

良好

9

18

6

及格

4

成績分為優(yōu)秀、良好、及格三個等級,橫向、縱向分別表示地理成績與數(shù)學(xué)成績,例如:表中數(shù)學(xué)成績?yōu)榱己玫墓灿?/span>人,若在該樣本中,數(shù)學(xué)成績優(yōu)秀率為,求的值.

(Ⅲ)將表示成有序數(shù)對,求“在地理成績?yōu)榧案竦膶W(xué)生中,數(shù)學(xué)成績?yōu)閮?yōu)秀的人數(shù)比及格的人數(shù)少”的數(shù)對的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)f(x)的定義域為[0,8],則函數(shù) 的定義域為(
A.[0,4]
B.[0,4)
C.(0,4)
D.[0,4)∪(4,16]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)f(x)滿足f(0)=2和f(x+1)﹣f(x)=2x﹣1對任意實數(shù)x都成立.
(1)求函數(shù)f(x)的解析式;
(2)當(dāng)t∈[﹣1,3]時,求y=f(2t)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義:在平面內(nèi),點到曲線上的點的距離的最小值稱為點到曲線的距離,在平面直角坐標(biāo)系中,已知圓 及點,動點到圓的距離與到點的距離相等,記點的軌跡為曲線.

(1)求曲線的方程;

(2)過原點的直線不與坐標(biāo)軸重合)與曲線交于不同的兩點,點在曲線上,且,直線軸交于點,設(shè)直線的斜率分別為,求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,四邊形為梯形, , , 為等邊三角形, .

(1)求證:平面平面

(2)求二面角大小的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知具有相關(guān)關(guān)系的兩個變量之間的幾組數(shù)據(jù)如下表所示:

(1)請根據(jù)上表數(shù)據(jù)在網(wǎng)格紙中繪制散點圖;

(2)請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出關(guān)于的線性回歸方程,并估計當(dāng)時, 的值;

(3)將表格中的數(shù)據(jù)看作五個點的坐標(biāo),則從這五個點中隨機抽取3個點,記落在直線右下方的點的個數(shù)為,求的分布列以及期望.

參考公式: , .

查看答案和解析>>

同步練習(xí)冊答案