精英家教網 > 高中數學 > 題目詳情
橢圓的右焦點與拋物線的焦點重合,過作與軸垂直的直線與橢圓交于兩點,與拋物線交于兩點,且。
(1)求橢圓的方程;
(2)若過點的直線與橢圓相交于兩點,設為橢圓上一點,且滿足
為坐標原點),當時,求實數的取值范圍。
(1)  (2)

試題分析:(1)設橢圓的半長軸、半短軸、半焦距為,則,且,
,又,

——————————————————————————————6分
(2)由題,直線斜率存在,設直線 ,聯立,消得:
,由,得  ①————————8分
,由韋達定理得,


(舍)②
①②得:——————————————————————————11分
的中點
,得代入橢圓方程得:
,即
,,即————————15分
點評:根據圓錐曲線的性質求解橢圓的方程,同時能聯立方程組來得到交點坐標的關系,結合韋達定理來分析求解,屬于中檔題。
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:填空題

若點P在曲線C1上,點Q在曲線C2:(x-2)2y2=1上,點O為坐標原點,則的最大值是       

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

若直線y=x+k與曲線x=恰有一個公共點,則k的取值范圍是___________

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

已知橢圓與雙曲線有相同的焦點,若的等比中項,的等差中項,則橢圓的離心率是(   )
A.B.C.D.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

(本題滿分12分)
已知橢圓的兩焦點是,離心率
(Ⅰ)求橢圓的方程;
(Ⅱ)若在橢圓上,且,求DPF1F2的面積.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

(本題滿分12分)設橢圓E: (a,b>0)過M(2,) ,N(,1)兩點,O為坐標原點.
(Ⅰ)求橢圓E的方程;
(Ⅱ)是否存在圓心在原點的圓,使得該圓的任意一條切線與橢圓E恒有兩個交A,B且?若存在,寫出該圓的方程,若不存在說明理由。

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

已知橢圓的一個焦點與拋物線的焦點重合,則該橢圓的離心率為(    )
A.B.C.D.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

已知直線軸交于點,與直線交于點,橢圓為左頂點,以為右焦點,且過點,當時,橢圓的離心率的范圍是
A.B.C.D.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

已知雙曲線的一條漸近線方程為,則其離心率為    。

查看答案和解析>>

同步練習冊答案