若直線y=x+k與曲線x=恰有一個(gè)公共點(diǎn),則k的取值范圍是___________

試題分析:曲線表示的是半圓,結(jié)合圖形可知當(dāng)直線與半圓有一個(gè)公共點(diǎn)時(shí)滿足
點(diǎn)評:本題主要采用數(shù)形結(jié)合法通過圖形來求解,需要注意的是曲線表示的是半圓
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分12分)
如圖,橢圓長軸端點(diǎn)為為橢圓中心,為橢圓的右焦點(diǎn),
,.

(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)記橢圓的上頂點(diǎn)為,直線交橢圓于兩點(diǎn),問:是否存在直線,使點(diǎn)恰為的垂心?若存在,求出直線的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知直線交于A,B兩點(diǎn),且(其中O為坐標(biāo)原點(diǎn)),若OMABM,則點(diǎn)M的軌跡方程為 (   )
A.2  B. 
C.1D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分10分)
已知點(diǎn),參數(shù),點(diǎn)Q在曲線C:上.
(1)求在直角坐標(biāo)系中點(diǎn)的軌跡方程和曲線C的方程;
(2)求|PQ|的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分12分)設(shè)為拋物線的焦點(diǎn),為拋物線上任意一點(diǎn),已為圓心,為半徑畫圓,與軸負(fù)半軸交于點(diǎn),試判斷過的直線與拋物線的位置關(guān)系,并證明。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)
橢圓的左、右焦點(diǎn)分別為、,點(diǎn),滿足
(1)求橢圓的離心率
(2)設(shè)直線與橢圓相交于兩點(diǎn),若直線與圓相交于兩點(diǎn),且,求橢圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知點(diǎn),點(diǎn),直線、都是圓的切線(點(diǎn)不在軸上)。
⑴求過點(diǎn)且焦點(diǎn)在軸上拋物線的標(biāo)準(zhǔn)方程;
⑵過點(diǎn)作直線與⑴中的拋物線相交于、兩點(diǎn),問是否存在定點(diǎn),使.為常數(shù)?若存在,求出點(diǎn)的坐標(biāo)與常數(shù);若不存在,請說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

橢圓的右焦點(diǎn)與拋物線的焦點(diǎn)重合,過作與軸垂直的直線與橢圓交于兩點(diǎn),與拋物線交于兩點(diǎn),且
(1)求橢圓的方程;
(2)若過點(diǎn)的直線與橢圓相交于兩點(diǎn),設(shè)為橢圓上一點(diǎn),且滿足
為坐標(biāo)原點(diǎn)),當(dāng)時(shí),求實(shí)數(shù)的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分13分)
已知點(diǎn)為拋物線: 的焦點(diǎn),為拋物線上的點(diǎn),且

(Ⅰ)求拋物線的方程和點(diǎn)的坐標(biāo);
(Ⅱ)過點(diǎn)引出斜率分別為的兩直線,與拋物線的另一交點(diǎn)為,與拋物線的另一交點(diǎn)為,記直線的斜率為
(。┤,試求的值;
(ⅱ)證明:為定值.

查看答案和解析>>

同步練習(xí)冊答案