【題目】如圖,在半徑為的半圓形(為圓心)鋁皮上截取一塊矩形材料,其中在直徑上,點(diǎn)在圓周上.
(1)設(shè),將矩形的面積表示成的函數(shù),并寫出其定義域;
(2)怎樣截取,才能使矩形材料的面積最大?并求出最大面積.
【答案】(1)y=2x,x∈(0,20).(2)截取AD=10時(shí),才能使矩形材料ABCD的面積最大,最大面積為.
【解析】試題分析:(1)根據(jù)勾股定理得OA=2,再根據(jù)矩形面積公式得函數(shù)關(guān)系式,最后根據(jù)實(shí)際意義得定義域;(2)先整理成關(guān)于二次函數(shù),再根據(jù)二次函數(shù)對(duì)稱軸與定義區(qū)間位置關(guān)系確定最大值取法
試題解析:(1)AB=2OA=2,∴y=f(x)=2x,x∈(0,20).
(2)時(shí), .
∴截取AD=10時(shí),才能使矩形材料ABCD的面積最大,最大面積為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)z1 , z2是復(fù)數(shù),則下列命題中的假命題是( )
A.若|z1﹣z2|=0,則 =
B.若z1= ,則 =z2
C.若|z1|=|z2|,則z1 =z2
D.若|z1|=|z2|,則z12=z22
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形中, , , , , 、分別在、上, ,現(xiàn)將四邊形沿折起,使平面平面.
()若,是否存在折疊后的線段上存在一點(diǎn),且,使得平面?若存在,求出的值;若不存在,說明理由.
()求三棱錐的體積的最大值,并求此時(shí)點(diǎn)到平面的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】解答題
(1)解不等式:|2x﹣1|﹣|x|<1;
(2)設(shè)a2﹣2ab+5b2=4對(duì)a,b∈R成立,求a+b的最大值及相應(yīng)的a,b.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】“活水圍網(wǎng)”養(yǎng)魚技術(shù)具有養(yǎng)殖密度高、經(jīng)濟(jì)效益好的特點(diǎn).研究表明:“活水圍網(wǎng)”養(yǎng)魚時(shí),某種魚在一定的條件下,每尾魚的平均生長速度(單位:千克/年)是養(yǎng)殖密度(單位:尾/立方米)的函數(shù).當(dāng)不超過4(尾/立方米)時(shí),的值為(千克/年);當(dāng)時(shí),是的一次函數(shù);當(dāng)達(dá)到(尾/立方米)時(shí),因缺氧等原因,的值為(千克/年).
(1)當(dāng)時(shí),求函數(shù)的表達(dá)式;
(2)當(dāng)養(yǎng)殖密度為多大時(shí),魚的年生長量(單位:千克/立方米)可以達(dá)到最大,并求出最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)= ,g(x)=lnx+ (a>0).
(1)求函數(shù)f(x)的極值;
(2)若x1、x2∈(0,+∞),使得g(x1)≤f(x2)成立,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列判斷正確的是 (把正確的序號(hào)都填上).
①若f(x)=ax2+(2a+b)x+2 (其中x∈[2a-1,a+4])是偶函數(shù),則實(shí)數(shù)b=2;
②若函數(shù)在區(qū)間上遞增,在區(qū)間上也遞增,則函數(shù)必在上遞增;
③f(x)表示-2x+2與-2x2+4x+2中的較小者,則函數(shù)f(x)的最大值為1;
④已知f(x)是定義在R上的不恒為零的函數(shù),且對(duì)任意的x、y∈R都滿足f(x·y)=x·f(y)+y·f(x),則f(x)是奇函數(shù).Ks
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知cos(75°+α)=,α是第三象限角,
(1)求sin(75°+α) 的值.
(2)求cos(α-15°) 的值.
(3)求sin(195°-α)+cos(105o-α)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如表提供了某廠節(jié)能降耗技術(shù)改造后在生產(chǎn)A產(chǎn)品過程中記錄的產(chǎn)量x(噸)與相應(yīng)的生產(chǎn)能耗y(噸)的幾組對(duì)應(yīng)數(shù)據(jù),根據(jù)表提供的數(shù)據(jù),求出y關(guān)于x的線性回歸方程為 =0.7x+0.35,則下列結(jié)論錯(cuò)誤的是( )
x | 3 | 4 | 5 | 6 |
y | 2.5 | t | 4 | 4.5 |
A.產(chǎn)品的生產(chǎn)能耗與產(chǎn)量呈正相關(guān)
B.t的取值必定是3.15
C.回歸直線一定過點(diǎn)(4,5,3,5)
D.A產(chǎn)品每多生產(chǎn)1噸,則相應(yīng)的生產(chǎn)能耗約增加0.7噸
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com