分析 (1)求導(dǎo)函數(shù),利用曲線y=f(x)在x=1處的切線方程為6x-2y-5=0,得k=1-a=3,即可求實(shí)數(shù)a的值;
(2)將條件對任意兩個(gè)不等的正數(shù)x1,x2,都有$\frac{h({x}_{1})-h({x}_{2})}{{x}_{1}-{x}_{2}}$>2恒成立轉(zhuǎn)化為$\frac{[h({x}_{1})-2{x}_{1}]-[h({x}_{2})-2{x}_{2}]}{{x}_{1}-{x}_{2}}$>0,構(gòu)造函數(shù)m(x)=h(x)-2x,則m(x)在(0,+∞)上單調(diào)遞增,即m'(x)≥0恒成立,再將恒成立問題轉(zhuǎn)化為求函數(shù)的最值,即可求出a的取值范圍.
解答 解:(1)y=f(x)-g(x)=$\frac{1}{2}$x2-alnx的導(dǎo)數(shù)為y'=x-$\frac{a}{x}$,
曲線y=f(x)-g(x)在x=1處的切線斜率為k=1-a,
由切線的方程為6x-2y-5=0,可得1-a=3,
解得a=-2;
(2)h(x)=f(x)+g(x)=$\frac{1}{2}$x2+alnx,
對任意兩個(gè)不等的正數(shù)x1,x2,都有$\frac{h({x}_{1})-h({x}_{2})}{{x}_{1}-{x}_{2}}$>2恒成立,即$\frac{[h({x}_{1})-2{x}_{1}]-[h({x}_{2})-2{x}_{2}]}{{x}_{1}-{x}_{2}}$>0,
令m(x)=h(x)-2x,則m(x)在(0,+∞)遞增,
故m′(x)=h′(x)-2=x+$\frac{a}{x}$-2≥0恒成立,即a≥x(2-x)恒成立,
因?yàn)閤(2-x)=-(x-1)2+1≤1,所以a≥1,
即a的取值范圍是[1,+∞).
點(diǎn)評(píng) 本題考查了利用導(dǎo)數(shù)求切線的斜率,研究函數(shù)的單調(diào)性與最值以及不等式恒成立問題的等價(jià)轉(zhuǎn)化方法等知識(shí)點(diǎn),其中構(gòu)造新函數(shù)確定單調(diào)性是解決第2問的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | a,b | B. | a,c | C. | c,b | D. | b,d |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [-2,2] | B. | [-3,2) | C. | [-3,2)∪(3,4] | D. | (3,4] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -1 | B. | $\frac{1}{2}$ | C. | $\frac{3}{2}$ | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com