13.已知函數(shù)f(x)在R上滿足f(x)=2f(2-x)-x2+8x-8,則曲線y=f(x)上的點(diǎn)與直線y=2x-5的距離的最小值是$\frac{4\sqrt{5}}{5}$.

分析 首先利用解方程組法求出函數(shù)f(x)的解析式,再求出平行于直線y=2x-5且與曲線f(x)=x2相切的切點(diǎn)坐標(biāo),利用點(diǎn)到直線的距離公式即可求出最小值.

解答 解:∵f(x)=2f(2-x)-x2+8x-8,
∴f(2-x)=2f(x)-(2-x)2+8(2-x)-8=2f(x)-x2+4x-4+16-8x-8.
將f(2-x)代入f(x)=2f(2-x)-x2+8x-8,
得f(x)=4f(x)-3x2
∴f(x)=x2,f'(x)=2x,
設(shè)y=f(x)在點(diǎn)$({x}_{0},{{x}_{0}}^{2})$處的切線和y=2x-5平行
則2x0=2,得x0=1,即切點(diǎn)為(1,1),
∴曲線y=f(x)上的點(diǎn)與直線y=2x-5的距離的最小值為d=$\frac{|2-1-5|}{\sqrt{5}}$=$\frac{{4\sqrt{5}}}{5}$.
故答案為:$\frac{4\sqrt{5}}{5}$.

點(diǎn)評(píng) 本題考查了導(dǎo)數(shù)幾何意義的運(yùn)用,直線與曲線相切的性質(zhì)以及點(diǎn)到直線距離的求法,考查轉(zhuǎn)化思想以及計(jì)算能力,屬于中檔題

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.在等差數(shù)列{an}中,已知a11=3(4-a2),則該數(shù)列的前11項(xiàng)和S11等于( 。
A.33B.44C.55D.66

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知函數(shù)f(x)=log3x,若f(x)=2,則x=(  )
A.9B.$\sqrt{3}$C.$\sqrt{2}$D.log32

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.在正方體ABCD-A1B1C1D1
(1)求異面直線A1B與B1C所成角的大小
(2)求證:BD1⊥AC
(3)求直線BD1與平面ABCD所成角的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.在下列式子中,不是不等式的是(  )
A.m≤0B.$-1>-\frac{7}{2}$C.x=5D.2x2+x>1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.某農(nóng)科所對(duì)冬季晝夜溫差大小與某反季節(jié)大豆新品種發(fā)芽多少之間的關(guān)系進(jìn)行分析研究,他們分別記錄了12月1日至12月5日的每天晝夜溫差與實(shí)驗(yàn)室每天每100顆種子中的發(fā)芽數(shù),得到如下資料:
日期12月1日12月2日12月3日12月4日12月5日
溫差x(℃)101113128
發(fā)芽數(shù)y(顆)2325302616
該農(nóng)科所確定的研究方案是:先從這五組數(shù)據(jù)中選取2組,用剩下的3組數(shù)據(jù)求線性回歸方程,再對(duì)被選取的2組數(shù)據(jù)進(jìn)行檢驗(yàn).
(1)求選取的2組數(shù)據(jù)恰好是不相鄰2天數(shù)據(jù)的概率.
(2)若選取的是12月1日與12月5日的兩組數(shù)據(jù),請(qǐng)根據(jù)12月2日至12月4日的數(shù)據(jù),求出y關(guān)于x的線性回歸方程$\widehaty=bx+a$;假設(shè)由線性回歸方程得到的估計(jì)數(shù)據(jù)與所選出的檢驗(yàn)數(shù)據(jù)的誤差均不超過2顆,則認(rèn)為得到的線性回歸方程是可靠的,試問(2)中所得的線性回歸方程是否可靠?
附:參考公式:b=$\frac{{\sum_{i=1}^n{{x_i}{y_i}}-n\overline x\overline y}}{{\sum_{i=1}^n{x_i^2-n{{\overline x}^2}}}}$,$\widehata=\overline y-\widehatb\overline x$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.若定義在R上的偶函數(shù)f(x)對(duì)任意x1,x2∈[0,+∞)(x1≠x2),有$\frac{f({x}_{2})-f({x}_{1})}{{x}_{2}-{x}_{1}}$<0,則(  )
A.f(3)<f(-2)<f(1)B.f(1)<f(-2)<f(3)C.f(1)<f(3)<f(-2)D.f(-2)<f(3)<f(1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知函數(shù)f(x)=$\frac{1}{2}$x2,g(x)=alnx.
(1)若曲線y=f(x)-g(x)在x=1處的切線的方程為6x-2y-5=0,求實(shí)數(shù)a的值;
(2)設(shè)h(x)=f(x)+g(x),若對(duì)任意兩個(gè)不等的正數(shù)x1,x2,都有$\frac{h({x}_{1})-h({x}_{2})}{{x}_{1}-{x}_{2}}$>2恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.下列四個(gè)函數(shù)中,在(0,1)上為增函數(shù)的是( 。
A.f(x)=-2x+1B.f(x)=-x2C.f(x)=-$\frac{1}{x}$D.f(x)=($\frac{1}{2}$)x

查看答案和解析>>

同步練習(xí)冊(cè)答案