精英家教網 > 高中數學 > 題目詳情

【題目】旅行社為去廣西桂林的某旅游團包飛機去旅游,其中旅行社的包機費為10000元,旅游團中的每人的飛機票按以下方式與旅行社結算:若旅游團的人數在20或20以下,飛機票每人收費800元;若旅游團的人數多于20,則實行優(yōu)惠方案,每多1人,機票費每張減少10元,但旅游團的人數最多為75,則該旅行社可獲得利潤的最大值為( )

A. 12000元B. 15000元C. 12500元D. 20000元

【答案】B

【解析】

設旅游團的人數為,每張機票為元,該旅行社可獲得利潤為元,利用一次函數和二次函數的性質,分別求出當時和當時,的最大值即可.

設旅游團的人數為,每張機票為元,該旅行社可獲得利潤為元,

時,,顯然當時,有最大值,最大值為;

時,

,

顯然當時,有最大值,最大值為,故本題選B.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知函數.

(1)討論函數的單調性;

(2)若不等式時恒成立,求實數的取值范圍;

(3)當時,證明:

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,四棱錐中,底面為平行四邊形, 底面 是棱的中點,

.

(1)求證: 平面

(2)如果是棱上一點,且直線與平面所成角的正弦值為,求的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某百貨公司1~6月份的銷售量與利潤的統(tǒng)計數據如下表:

月份

1

2

3

4

5

6

銷售量x(萬件)

10

11

13

12

8

6

利潤y(萬元)

22

25

29

26

16

12

附:

(1)根據2~5月份的統(tǒng)計數據,求出關于的回歸直線方程

(2)若由回歸直線方程得到的估計數據與剩下的檢驗數據的誤差均不超過萬元,則認為得到的回歸直線方程是理想的,試問所得回歸直線方程是否理想?(參考公式:,

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在四棱錐P﹣ABCD中,側面PAB⊥底面ABCD,且∠PAB=∠ABC=90°,AD∥BC,PA=AB=BC=2AD,E是PC的中點.
(Ⅰ)求證:DE⊥平面PBC;
(Ⅱ)求二面角A﹣PD﹣E的余弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設拋物線C:x2=4y的焦點為F,斜率為k的直線l經過點F,若拋物線C上存在四個點到直線l的距離為2,則k的取值范圍是(
A.(﹣∞,﹣ )∪( ,+∞)
B.(﹣ ,﹣1)∪(1,
C.(﹣ ,
D.(﹣∞,﹣1)∪(1,+∞)

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數有如下性質:如果常數,那么該函數在上是減函數,在上是增函數.

(1)已知,,利用上述性質,求函數的單調區(qū)間和值域.

(2)對于(1)中的函數和函數,若對于任意的,總存在,使得成立,求實數的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,四棱錐P﹣ABCD中,PA⊥平面ABCD,四邊形ABCD為梯形,AD∥BC,BC=6,PA=AD=CD=2,E為BC上一點且BE= BC,PB⊥AE.

(1)求證:AB⊥PE;
(2)求二面角B﹣PC﹣D的余弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數.

1)解不等式

(2)若函數在區(qū)間上存在零點,求實數的取值范圍;

3)若函數,其中為奇函數, 為偶函數,若不等式對任意恒成立,求實數的取值范圍.

查看答案和解析>>

同步練習冊答案