過橢圓內(nèi)一點(diǎn)M(2,0) 引橢圓的動弦AB, 則弦AB的中點(diǎn)N的軌跡方程是                         .  
 
設(shè)N(x,y), 動弦AB方程為, 與聯(lián)立, 消去y得: , 消參即得.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)橢圓+=1(ab>0)的左焦點(diǎn)為F1(-2,0),左準(zhǔn)線l1x軸交于點(diǎn)N(-3,0),過點(diǎn)N且傾斜角為30°的直線l交橢圓于AB兩點(diǎn).
(1)求直線l和橢圓的方程;
(2)求證:點(diǎn)F1(-2,0)在以線段AB為直徑的圓上.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

過橢圓C:上任一點(diǎn)P,作橢圓C的右準(zhǔn)線的垂線PH(H為垂足),延長PH到點(diǎn)Q,使|HQ|=λ|PH|(λ≥1)。當(dāng)點(diǎn)P在橢圓C上運(yùn)動時,點(diǎn)Q的軌跡的離心率的取值范圍為(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知點(diǎn)在圓上移動,點(diǎn)在橢圓上移動,求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知△ABC的兩個頂點(diǎn)A、B分別是橢圓 的左、右焦點(diǎn), 三個內(nèi)角A、BC滿足, 則頂點(diǎn)C的軌跡方程是(        ).  
A.B.(x<0)C.(x.<-2 )D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓的左、右焦點(diǎn)分別為,若以為圓心,為半徑作圓,過橢圓上一點(diǎn)作此圓的切線,切點(diǎn)為,且的最小值不小于為
(1)求橢圓的離心率的取值范圍;
(2)設(shè)橢圓的短半軸長為,圓軸的右交點(diǎn)為,過點(diǎn)作斜率為的直線與橢圓相交于兩點(diǎn),若,求直線被圓截得的弦長的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)是橢圓的兩個焦點(diǎn),是橢圓上一點(diǎn),若,證明:的面積只與橢圓的短軸長有關(guān)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知m,n,m+n成等差數(shù)列,m,n,mn成等比數(shù)列,則橢圓的離心率為           

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

如圖所示,橢圓中心在原點(diǎn),F是左焦點(diǎn),直線與BF交于D,且,則橢圓的離心率為(      )                                                          
 
A      B    C    D 

查看答案和解析>>

同步練習(xí)冊答案