已知函數(shù)在上的最大值與最小值之和為,記.
(1)求的值;
(2)證明;
(3)求的值.
(1);(2)證明見試題解析;(3)1006.
解析試題分析:(1)函數(shù)()在時,最大值為,最小值為,在時,最大值為,最小值為,所以它們的和為;(2)關(guān)鍵是的化簡,,這樣應(yīng)有;(3)這種題型不可能直接計算,應(yīng)該是尋找規(guī)律,由(2)的結(jié)論知函數(shù)值的計算需要配對進行,即,,……,從而很快計算出結(jié)果.
試題解析:解(1)函數(shù)(且)在的最大值與最小值之和為20,
∴,得,或(舍去).
∴.
(2)∵
∴
.
(3)由(2)知, , ,……,,
∴原式=1006.
考點:1、函數(shù)的單調(diào)性;2、指數(shù)的運算;3、分組求和.
科目:高中數(shù)學 來源: 題型:解答題
設(shè)函數(shù)對任意,都有,當時,
(1)求證:是奇函數(shù);
(2)試問:在時 ,是否有最大值?如果有,求出最大值,如果沒有,說明理由.
(3)解關(guān)于x的不等式
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
對于函數(shù)
(1)探索函數(shù)的單調(diào)性,并用單調(diào)性定義證明;
(2)是否存在實數(shù)使函數(shù)為奇函數(shù)?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù)是奇函數(shù),并且函數(shù)的圖像經(jīng)過點(1,3),(1)求實數(shù)的值;(2)求函數(shù)的值域.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
設(shè)函數(shù)的定義域為,并且滿足,且,當時,
(1).求的值;(3分)
(2).判斷函數(shù)的奇偶性;(3分)
(3).如果,求的取值范圍.(6分)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知點直線AM,BM相交于點M,且.
(1)求點M的軌跡的方程;
(2)過定點(0,1)作直線PQ與曲線C交于P,Q兩點,且,求直線PQ的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù),是否存在實數(shù)a、b、c,使同時滿足下列三個條件:(1)定義域為R的奇函數(shù);(2)在上是增函數(shù);(3)最大值是1.若存在,求出a、b、c;若不存在,說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com