【題目】交大設(shè)計(jì)學(xué)院植物園準(zhǔn)備用一塊邊長(zhǎng)為4百米的等邊ΔABC田地(如圖)建立芳香植物生長(zhǎng)區(qū)、植物精油提煉處與植物精油體驗(yàn)點(diǎn).田地內(nèi)擬建筆直小路MNAP,其中M、N分別為AC、BC的中點(diǎn),點(diǎn)PCN上.規(guī)劃在小路MNAP的交點(diǎn)O(OMN不重合)處設(shè)立植物精油體驗(yàn)點(diǎn),圖中陰影部分為植物精油提煉處,空白部分為芳香植物生長(zhǎng)區(qū),A、N為出入口(小路寬度不計(jì)).為節(jié)約資金,小路MO段與OP段建便道,供芳香植物培育之用,費(fèi)用忽略不計(jì),為車(chē)輛安全出入,小路AO段的建造費(fèi)用為每百米4萬(wàn)元,小路ON段的建造費(fèi)用為每百米3萬(wàn)元.

(1)若擬建的小路AO段長(zhǎng)為百米,求小路ON段的建造費(fèi)用;

(2)設(shè)∠BAP=,求的值,使得小路AO段與ON段的建造總費(fèi)用最小,并求岀最小建造總費(fèi)用(精確到元).

【答案】(1) 小路ON段的建造費(fèi)用為3萬(wàn)元.

(2) 當(dāng)時(shí),小路AO段與ON段的建造總費(fèi)用最小,最小費(fèi)用約為元.

【解析】

(1) 中,,,∠,利用余弦定理可求解長(zhǎng)度,結(jié)合即可求解;

(2)在中,,∠,,利用正弦定理可求,結(jié)合,可建立關(guān)于的函數(shù),利用導(dǎo)數(shù)即可判斷最值.

(1)中點(diǎn), ,,,由余弦定理可得,,解得或-3(舍去),又,所以,故小路ON段的建造費(fèi)用為3萬(wàn)元.

(2)在,,由正弦定理可得,,即, ,故小路AO段與ON段的建造總費(fèi)用為

,

,令,得,,令,得,,故當(dāng)時(shí),小路AO段與ON段的建造總費(fèi)用最小,由,得,故最小費(fèi)用為元.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)討論的單調(diào)性.

(2)試問(wèn)是否存在,使得對(duì)恒成立?若存在,求的取值范圍;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的離心率為,以橢圓的長(zhǎng)軸和短軸為對(duì)角線(xiàn)的四邊形的面積為.

1)求橢圓的方程;

2)若直線(xiàn)與橢圓相交于兩點(diǎn),設(shè)為橢圓上一動(dòng)點(diǎn),且滿(mǎn)足為坐標(biāo)原點(diǎn)).當(dāng)時(shí),求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中,四邊形是菱形, ,平面平面

在棱上運(yùn)動(dòng).

(1)當(dāng)在何處時(shí), 平面;

(2)已知的中點(diǎn), 交于點(diǎn),當(dāng)平面時(shí),求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知F為橢圓C的左焦點(diǎn),過(guò)F作兩條互相垂直的直線(xiàn),,直線(xiàn)C交于A,B兩點(diǎn),直線(xiàn)C交于D,E兩點(diǎn),則四邊形ADBE的面積最小值為(

A.4B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知圓,點(diǎn)是圓內(nèi)一個(gè)定點(diǎn),點(diǎn)是圓上任意一點(diǎn),線(xiàn)段的垂直平分線(xiàn)和半徑相交于點(diǎn).當(dāng)點(diǎn)在圓上運(yùn)動(dòng)時(shí),點(diǎn)的軌跡為曲線(xiàn).

1)求曲線(xiàn)的方程;

2)設(shè)過(guò)點(diǎn)的直線(xiàn)與曲線(xiàn)相交于兩點(diǎn)(點(diǎn)兩點(diǎn)之間).是否存在直線(xiàn)使得?若存在,求直線(xiàn)的方程;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)求的單調(diào)區(qū)間;

(2)若上成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在正方體中,點(diǎn)E,F分別是棱上的動(dòng)點(diǎn),且.當(dāng)三棱錐的體積取得最大值時(shí),記二面角、平面角分別為,,則( )

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列判斷正確的是( )

A.”是“”的充分不必要條件

B.函數(shù)的最小值為2

C.當(dāng)時(shí),命題“若,則”為真命題

D.命題“,”的否定是“

查看答案和解析>>

同步練習(xí)冊(cè)答案