已知函數(shù)f(x)=loga(a-ax)且a>1,
(1)求函數(shù)的定義域和值域;
(2)討論f(x)在其定義域上的單調(diào)性;
(3)證明函數(shù)圖象關于y=x對稱.
分析:(1)由真數(shù)大于零來求定義域,確定值域;
(2)用復合函數(shù)的單調(diào)性判斷;
(3)研究其反函數(shù)就是本身.
解答:解析:(1)a-ax>0
又∵a>1,
∴x<1
故其定義域為(-∞,1),值域為(-∞,1)
(2)設1>x2>x1
∵a>1,∴ax2ax1,于是a-ax2<a-ax1
則loga(a-ax2)<loga(a-ax1
即f(x2)<f(x1
∴f(x)在定義域(-∞,1)上是減函數(shù)
(3)證明:令y=loga(a-ax)(x<1),則a-ax=ay,x=loga(a-ay
∴f-1(x)=loga(a-ax)(x<1)
故f(x)的反函數(shù)是其自身,得函數(shù)f(x)=loga(a-ax)(x<1=圖象關于y=x對稱.
點評:本題主要考查函數(shù)基本性質(zhì),定義域,值域,單調(diào)性和對稱性.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=2x-2+ae-x(a∈R)
(1)若曲線y=f(x)在點(1,f(1))處的切線平行于x軸,求a的值;
(2)當a=1時,若直線l:y=kx-2與曲線y=f(x)在(-∞,0)上有公共點,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=x2+2|lnx-1|.
(1)求函數(shù)y=f(x)的最小值;
(2)證明:對任意x∈[1,+∞),lnx≥
2(x-1)
x+1
恒成立;
(3)對于函數(shù)f(x)圖象上的不同兩點A(x1,y1),B(x2,y2)(x1<x2),如果在函數(shù)f(x)圖象上存在點M(x0,y0)(其中x0∈(x1,x2))使得點M處的切線l∥AB,則稱直線AB存在“伴侶切線”.特別地,當x0=
x1+x2
2
時,又稱直線AB存在“中值伴侶切線”.試問:當x≥e時,對于函數(shù)f(x)圖象上不同兩點A、B,直線AB是否存在“中值伴侶切線”?證明你的結論.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=x2-bx的圖象在點A(1,f(1))處的切線l與直線x+3y-1=0垂直,若數(shù)列{
1
f(n)
}的前n項和為Sn,則S2012的值為( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=xlnx
(Ⅰ)求函數(shù)f(x)的極值點;
(Ⅱ)若直線l過點(0,-1),并且與曲線y=f(x)相切,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
3
x
a
+
3
(a-1)
x
,a≠0且a≠1.
(1)試就實數(shù)a的不同取值,寫出該函數(shù)的單調(diào)增區(qū)間;
(2)已知當x>0時,函數(shù)在(0,
6
)上單調(diào)遞減,在(
6
,+∞)上單調(diào)遞增,求a的值并寫出函數(shù)的解析式;
(3)記(2)中的函數(shù)圖象為曲線C,試問是否存在經(jīng)過原點的直線l,使得l為曲線C的對稱軸?若存在,求出直線l的方程;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案