【題目】2020年新年伊始,新型冠狀病毒來勢洶洶,疫情使得各地學(xué)生在寒假結(jié)束之后無法返校,教育部就此提出了線上教學(xué)和遠(yuǎn)程教學(xué),停課不停學(xué)的要求也得到了家長們的贊同.各地學(xué)校開展各式各樣的線上教學(xué),某地學(xué)校為了加強(qiáng)學(xué)生愛國教育,擬開設(shè)國學(xué)課,為了了解學(xué)生喜歡國學(xué)是否與性別有關(guān),該學(xué)校對100名學(xué)生進(jìn)行了問卷調(diào)查,得到如下列聯(lián)表:
喜歡國學(xué) | 不喜歡國學(xué) | 合計(jì) | |
男生 | 20 | 50 | |
女生 | 10 | ||
合計(jì) | 100 |
(1)請將上述列聯(lián)表補(bǔ)充完整,并判斷能否在犯錯(cuò)誤的概率不超過0.001的前提下認(rèn)為喜歡國學(xué)與性別有關(guān)系?
(2)針對問卷調(diào)查的100名學(xué)生,學(xué)校決定從喜歡國學(xué)的人中按分層抽樣的方法隨機(jī)抽取6人成立國學(xué)宣傳組,并在這6人中任選2人作為宣傳組的組長,求選出的兩人均為女生的概率.
參考數(shù)據(jù):
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
,.
【答案】(1)列聯(lián)表見詳解,能在犯錯(cuò)誤的概率不超過0.001的前提下認(rèn)為喜歡國學(xué)與性別有關(guān)系;(2)
【解析】
(1)根據(jù)題意填寫列聯(lián)表,計(jì)算,對照臨界值得出結(jié)論;
(2)根據(jù)題意求出分層抽樣隨機(jī)抽取的6人中男生2人,女生4人,利用列舉法求出基本事件數(shù),計(jì)算對應(yīng)的概率值.
解:(1)補(bǔ)充完整的列聯(lián)表如下:
喜歡國學(xué) | 不喜歡國學(xué) | 合計(jì) | |
男生 | 20 | 30 | 50 |
女生 | 40 | 10 | 50 |
合計(jì) | 60 | 40 | 100 |
計(jì)算得的觀測值為
,
所以能在犯錯(cuò)誤的概率不超過0.001的前提下認(rèn)為喜歡國學(xué)與性別有關(guān)系;
(2)喜歡國學(xué)的共60人,按分層抽樣抽取6人,
則每人被抽到的概率均為,需抽取男生2人,女生4人,
設(shè)抽取的男生為,女生為,
選出的兩人均為女生為事件,
則基本事件空間
,,
事件,,
,
故選出的兩人均為女生的概率為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)sincos(ω>0),如果存在實(shí)數(shù)x0,使得對任意的實(shí)數(shù)x,都有f(x0﹣2020)≤f(x)≤f(x0)成立,則ω的最大值為( )
A.2020B.4040C.1010D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時(shí),求在處的切線方程;
(2)當(dāng)時(shí),討論的單調(diào)性;
(3)若有兩個(gè)極值點(diǎn)、,且不等式恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】垃圾種類可分為可回收垃圾,干垃圾,濕垃圾,有害垃圾,為調(diào)查中學(xué)生對垃圾分類的了解程度某調(diào)查小組隨機(jī)抽取了某市的100名高中生,請他們指出生活中若干項(xiàng)常見垃圾的種類,把能準(zhǔn)確分類不少于3項(xiàng)的稱為“比較了解”少于三項(xiàng)的稱為“不太了解”調(diào)查結(jié)果如下:
0項(xiàng) | 1項(xiàng) | 2項(xiàng) | 3項(xiàng) | 4項(xiàng) | 5項(xiàng) | 5項(xiàng)以上 | |
男生(人) | 1 | 10 | 17 | 14 | 14 | 10 | 4 |
女生(人) | 0 | 8 | 10 | 6 | 3 | 2 | 1 |
(1)完成如下列聯(lián)表并判斷是否有95%的把握認(rèn)為了解垃圾分類與性別有關(guān)?
比較了解 | 不太了解 | 合計(jì) | |
男生 | __________ | __________ | __________ |
女生 | __________ | __________ | __________ |
合計(jì) | __________ | __________ | __________ |
(2)從能準(zhǔn)確分類不少于3項(xiàng)的高中生中,按照男、女生采用分層抽樣的方法抽取9人的樣本.
(i)求抽取的女生和男生的人數(shù);
(ii)從9人的樣本中隨機(jī)抽取兩人,求男生女生都有被抽到的概率.
參考數(shù)據(jù):
0.100 | 0.050 | 0.010 | 0.001 | |
2.706 | 3.841 | 6.635 | 10.828 |
,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知為等差數(shù)列,各項(xiàng)為正的等比數(shù)列的前項(xiàng)和為,,,__________.在①;②;③這三個(gè)條件中任選其中一個(gè),補(bǔ)充在橫線上,并完成下面問題的解答(如果選擇多個(gè)條件解答,則以選擇第一個(gè)解答記分).
(1)求數(shù)列和的通項(xiàng)公式;
(2)求數(shù)列的前項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在極坐標(biāo)系中,直線l的極坐標(biāo)方程為ρcosθ=4,曲線C的極坐標(biāo)方程為ρ=2cosθ+2sinθ,以極點(diǎn)為坐標(biāo)原點(diǎn)O,極軸為x軸的正半軸建立直角坐標(biāo)系,射線l':y=kx(x≥0,0<k<1)與曲線C交于O,M兩點(diǎn).
(Ⅰ)寫出直線l的直角坐標(biāo)方程以及曲線C的參數(shù)方程;
(Ⅱ)若射線l′與直線l交于點(diǎn)N,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線,直線()與交于兩點(diǎn),為的中點(diǎn),為坐標(biāo)原點(diǎn).
(1)求直線斜率的最大值;
(2)若點(diǎn)在直線上,且為等邊三角形,求點(diǎn)的坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com