【題目】如圖,在四棱柱中,點和分別為和的中點,側(cè)棱底面.
(1)求證://平面;
(2)求二面角的正弦值
【答案】(1)證明見解析(2)
【解析】
(1)根據(jù)題意,以為坐標原點建立空間直角坐標系,寫出各個點的坐標,可通過證明與平面的法向量垂直,來證明//平面.
(2)根據(jù)(1)中建立的平面直角坐標系,分別求得平面的法向量與平面的法向量,即可求得兩個平面夾角的余弦值,結(jié)合同角三角函數(shù)關(guān)系式即可求得二面角的正弦值.
(1)證明:根據(jù)題意,以為坐標原點,為軸,為軸,為軸建立如下圖所示的空間直角坐標系:
點和分別為和的中點, ,
則,則
,則
所以
依題意可知為平面的一個法向量
而
所以
又因為直線平面
所以平面
(2)
設(shè)為平面的法向量,
則,即
不妨設(shè),可得
設(shè)為平面的一個法向量,
則,又,得
不妨設(shè),可得
因此有,
于是
所以二面角的正弦值為
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點與點都在橢圓上,且的左集點為,過點的直線交橢圓于,兩點.
(1)求的方程;
(2)若以為直徑的圓經(jīng)過點,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】隨著“互聯(lián)網(wǎng)+交通”模式的迅猛發(fā)展,“共享助力單車”在很多城市相繼出現(xiàn).某“共享助力單車”運營公司為了解某地區(qū)用戶對該公司所提供的服務(wù)的滿意度,隨機調(diào)查了100名用戶,得到用戶的滿意度評分(滿分10分),現(xiàn)將評分分為5組,如下表:
組別 | 一 | 二 | 三 | 四 | 五 |
滿意度評分 | [0,2) | [2,4) | [4,6) | [6,8) | [8,10] |
頻數(shù) | 5 | 10 | a | 32 | 16 |
頻率 | 0.05 | b | 0.37 | c | 0.16 |
(1)求表格中的a,b,c的值;
(2)估計用戶的滿意度評分的平均數(shù);
(3)若從這100名用戶中隨機抽取25人,估計滿意度評分低于6分的人數(shù)為多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標系xOy中,直線的參數(shù)方程為(t為參數(shù)),以坐標原點為極點,x軸的正半軸為極軸建立極坐標系,已知曲線的極坐標方程為,直線與曲線C交于兩點.
(1)求直線的普通方程和曲線C的直角坐標方程;
(2)求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形中,點是的中點,點是的中點,將分別沿折起,使兩點重合于,連接.
(1)求證:;
(2)點是上一點,若平面,則為何值?并說明理由.
(3)若,求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某企業(yè)有兩個分廠生產(chǎn)某種零件,按規(guī)定內(nèi)徑尺寸(單位:mm)的值落在[29.94,30.06)的零件為優(yōu)質(zhì)品.從兩個分廠生產(chǎn)的零件中各抽出了500件,量其內(nèi)徑尺寸,得結(jié)果如下表:
甲廠:
分組 | [29.86,29.90) | [29.90,29.94) | [29.94,29.98) | [29.98,30.02) | [30.02,30.06) | [30.06,30.10) | [30.10,30.14) |
頻數(shù) | 12 | 63 | 86 | 182 | 92 | 61 | 4 |
乙廠:
分組 | [29.86,29.90) | [29.90,29.94) | [29.94,29.98) | [29.98,30.02) | [30.02,30.06) | [30.06,30.10) | [30.10,30.14) |
頻數(shù) | 29 | 71 | 85 | 159 | 76 | 62 | 18 |
(1)試分別估計兩個分廠生產(chǎn)的零件的優(yōu)質(zhì)品率;
(2)由以上統(tǒng)計數(shù)據(jù)填下面列聯(lián)表,并問是否有的把握認為“兩個分廠生產(chǎn)的零件的質(zhì)量有差異”.
甲 廠 | 乙 廠 | 合計 | |
優(yōu)質(zhì)品 | |||
非優(yōu)質(zhì)品 | |||
合計 |
附:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)在與時都取得極值.
(1)求的值與函數(shù)的單調(diào)區(qū)間;
(2)若對,不等式恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為響應(yīng)“生產(chǎn)發(fā)展、生活富裕、鄉(xiāng)風文明、村容整潔、管理民主”的社會主義新農(nóng)村建設(shè),某自然村將村邊一塊廢棄的扇形荒地(如圖)租給蜂農(nóng)養(yǎng)蜂、產(chǎn)蜜與售蜜.已知扇形AOB中,,百米),荒地內(nèi)規(guī)劃修建兩條直路AB,OC,其中點C在弧AB上(C與A,B不重合),在小路AB與OC的交點D處設(shè)立售蜜點,圖中陰影部分為蜂巢區(qū),空白部分為蜂源植物生長區(qū).設(shè),蜂巢區(qū)的面積為S(平方百米).
(1)求S關(guān)于的函數(shù)關(guān)系式;
(2)當為何值時,蜂巢區(qū)的面積S最小,并求此時S的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com