已知橢圓如圖,=1,直線L:=1,P是L上一點(diǎn),射線OP交橢圓于點(diǎn)R,又點(diǎn)Q在OP上且滿足|OQ|·|OP|=|OR|2.當(dāng)點(diǎn)P在L上移動(dòng)時(shí),求點(diǎn)Q的軌跡方程,并說(shuō)明軌跡是什么曲線.
解:由題設(shè)知點(diǎn)Q不在原點(diǎn),設(shè)P、R、Q的坐標(biāo)分別為(xP,yP),(xR,yR),(x,y),其中x、y不同時(shí)為零. 設(shè)OP與x軸正方向的夾角為α,則有 xP=|OP|cosα,yP=|OP|sinα xR=|OR|cosα,yR=|OR|sinα x=|OQ|cosα,y=|OQ|sinα 由上式及題設(shè)|OQ|·|OP|=|OR|2,得
由點(diǎn)P在直線L上,點(diǎn)R在橢圓上,得方程組
將①②③④代入⑤⑥,整理得點(diǎn)Q的軌跡方程為=1(其中x、y不同時(shí)為零) 所以點(diǎn)Q的軌跡是以(1,1)為中心,長(zhǎng)、短半軸分別為和,且長(zhǎng)軸與x軸平行的橢圓,去掉坐標(biāo)原點(diǎn).
|
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源:數(shù)學(xué)教研室 題型:044
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:浙江省紹興市2012屆高三上學(xué)期期末考試數(shù)學(xué)文科試題 題型:044
已知橢圓C1:+=1(a>b>0)和橢圓C2:x2+y2=r2都過(guò)點(diǎn)(0,-1),且橢圓C1的離心率為.
(Ⅰ)求橢圓C1和C2的方程;
(Ⅱ)如圖,A,B分別為橢圓C1的左右頂點(diǎn),P(x0,y0)為圓C2上的動(dòng)點(diǎn).過(guò)點(diǎn)P作圓C2的切線l,交橢圓C1與不同的兩點(diǎn)C,D,且l與x軸的交點(diǎn)為M,直線AC與直線DB的交點(diǎn)為N.
(i)求切線l的方程;
(ii)問(wèn)點(diǎn)M,N的橫坐標(biāo)之積是否為定值?若是定值,求出此定值;若不是定值,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:湖北省襄陽(yáng)五中2012屆高三下學(xué)期第二次適應(yīng)性考試數(shù)學(xué)文科試題 題型:044
如圖,已知橢圓C:+=1,(a>b>0)的左、右焦點(diǎn)為F1、F2,其上頂點(diǎn)為A.已知ΔF1AF2是邊長(zhǎng)為2的正三角形.
(Ⅰ)求橢圓C的方程;
(Ⅱ)過(guò)點(diǎn)Q(-4,0)任作一動(dòng)直線l交橢圓C于M,N兩點(diǎn),記=λ·.若在線段MN上取一點(diǎn)R,使得=-λ·,試判斷當(dāng)直線l運(yùn)動(dòng)時(shí),點(diǎn)R是否在某一定直線上運(yùn)動(dòng)?若在,請(qǐng)求出該定直線的方程;若不在請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(Ⅰ)求橢圓的方程;
(Ⅱ)若點(diǎn)P為l上的動(dòng)點(diǎn),求∠F1PF2最大值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com