【題目】某班級(jí)有60名學(xué)生,學(xué)號(hào)分別為1~60,其中男生35人,女生25人.為了了解學(xué)生的體質(zhì)情況,甲、乙兩人對(duì)全班最近一次體育測(cè)試的成績(jī)分別進(jìn)行了隨機(jī)抽樣.其中一人用的是系統(tǒng)抽樣,另一人用的是分層抽樣,他們得到各12人的樣本數(shù)據(jù)如下所示,并規(guī)定體育成績(jī)大于或等于80人為優(yōu)秀.
甲抽取的樣本數(shù)據(jù):
學(xué)號(hào) | 4 | 9 | 14 | 19 | 24 | 29 | 34 | 39 | 44 | 49 | 54 | 59 |
性別 | 男 | 女 | 男 | 男 | 女 | 男 | 女 | 男 | 女 | 女 | 男 | 男 |
體育成績(jī) | 90 | 80 | 75 | 80 | 83 | 85 | 75 | 80 | 70 | 80 | 83 | 70 |
女抽取的樣本數(shù)據(jù):
學(xué)號(hào) | 1 | 8 | 10 | 20 | 23 | 28 | 33 | 35 | 43 | 48 | 52 | 57 |
性別 | 男 | 男 | 男 | 男 | 男 | 男 | 男 | 女 | 女 | 女 | 女 | 女 |
體育成績(jī) | 95 | 85 | 85 | 80 | 70 | 80 | 80 | 65 | 70 | 60 | 70 | 80 |
(Ⅰ)在乙抽取的樣本中任取4人,記這4人中體育成績(jī)優(yōu)秀的學(xué)生人數(shù)為,求的分布列和數(shù)學(xué)期望;
(Ⅱ)請(qǐng)你根據(jù)乙抽取的樣本數(shù)據(jù),判斷是否有95%的把握認(rèn)為體育成績(jī)是否為優(yōu)秀和性別有關(guān);
(Ⅲ)判斷甲、乙各用的何種抽樣方法,并根據(jù)(Ⅱ)的結(jié)論判斷哪種抽樣方法更優(yōu),說明理由.
附:
0.15 | 0.10 | 0.05 | 0.010 | 0.005 | 0.001 | |
k | 2.072 | 2.706 | 3.841 | 6.635 | 7.879 | 10.828 |
【答案】(Ⅰ)見解析,(Ⅱ)有;(Ⅲ)甲用的是系統(tǒng)抽樣,乙用的是分層抽樣.采用分層抽樣方法比系統(tǒng)抽樣方法更優(yōu).
【解析】
(Ⅰ)依題意可知隨機(jī)變量服從超幾何分布,列出分布列,求出期望;
(Ⅱ)列出列聯(lián)表,計(jì)算出卡方,即可判斷;
(Ⅲ)根據(jù)數(shù)據(jù)特征,選擇合適的抽樣方法;
解:(Ⅰ)在乙抽取的樣本中,體育成績(jī)優(yōu)秀的學(xué)生人數(shù)為7.
的可能取值為0,1,2,3,4.
,,
分布列為
0 | 1 | 2 | 3 | 4 | |
.
(Ⅱ)由乙抽取的樣本數(shù)據(jù),得列聯(lián)表如下:
優(yōu)秀 | 非優(yōu)秀 | 合計(jì) | |
男 | 6 | 1 | 7 |
女 | 1 | 4 | 5 |
合計(jì) | 7 | 5 | 12 |
,
所以有95%的把握認(rèn)為體育成績(jī)是否為優(yōu)秀與性別有關(guān).
(Ⅲ)甲用的是系統(tǒng)抽樣,乙用的是分層抽樣.
由(Ⅱ)的結(jié)論知,體育成績(jī)是否為優(yōu)秀與性別有關(guān),并且從樣本數(shù)據(jù)能看出體育成績(jī)與性別有明顯差異,因此采用分層抽樣方法比系統(tǒng)抽樣方法更優(yōu).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知?jiǎng)狱c(diǎn)P(x,y)滿足|x﹣1|+|y﹣a|=1,O為坐標(biāo)原點(diǎn),若的最大值的取值范圍為,則實(shí)數(shù)a的取值范圍是_____.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系xOy中,曲線C1的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,曲線C2的極坐標(biāo)方程為.
(1)寫出曲線C1和C2的直角坐標(biāo)方程;
(2)已知P為曲線C2上的動(dòng)點(diǎn),過點(diǎn)P作曲線C1的切線,切點(diǎn)為A,求|PA|的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓E:,過右焦點(diǎn)F的直線l與橢圓E交于A,B兩點(diǎn)(A,B兩點(diǎn)不在x軸上),橢圓E在A,B兩點(diǎn)處的切線交于P,點(diǎn)P在定直線上.
(1)記點(diǎn),求過點(diǎn)與橢圓E相切的直線方程;
(2)以為直徑的圓過點(diǎn)F,求面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐的側(cè)棱與四棱錐的側(cè)棱都與底面垂直,,,,,,.
(1)證明:平面;
(2)在棱上是否存在點(diǎn)M,使平面與平面所成角的正弦值為?如果存在,指出M點(diǎn)的位置;如果不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).(為自然對(duì)數(shù)的底數(shù))
(1)當(dāng)時(shí),設(shè),求函數(shù)在上的最值;
(2)當(dāng)時(shí),證明:,其中(表示中較小的數(shù).)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓,圓,如圖,分別交軸正半軸于點(diǎn).射線分別交于點(diǎn),動(dòng)點(diǎn)滿足直線與軸垂直,直線與軸垂直.
(1)求動(dòng)點(diǎn)的軌跡的方程;
(2)過點(diǎn)作直線交曲線與點(diǎn),射線與點(diǎn),且交曲線于點(diǎn).問:的值是否是定值?如果是定值,請(qǐng)求出該定值;如果不是定值,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,直線的參數(shù)方程(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程是.
(1)求曲線的直角坐標(biāo)方程和直線的普通方程;
(2)若直線與曲線交于、兩點(diǎn),點(diǎn)的坐標(biāo)為,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線的焦點(diǎn)為,過點(diǎn)作直線與拋物線交于、兩點(diǎn),當(dāng)直線與軸垂直時(shí)長(zhǎng)為.
(1)求拋物線的方程;
(2)若與的面積相等,求直線的方程.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com