19.某學(xué)校高一、高二、高三年級(jí)的學(xué)生人數(shù)之比為4:3:3,現(xiàn)用分層抽樣的方法從該校高中三個(gè)年級(jí)的學(xué)生中抽取容量為50的樣本,則從高二年級(jí)抽取的學(xué)生人數(shù)為(  )
A.15B.20C.25D.30

分析 根據(jù)三個(gè)年級(jí)的人數(shù)比,做出高二所占的比例,用要抽取得樣本容量乘以高二所占的比例,得到要抽取的高二的人數(shù).

解答 解:∵高一、高二、高三年級(jí)的學(xué)生人數(shù)之比為3:3:4,
∴高二在總體中所占的比例是$\frac{3}{3+3+4}$=$\frac{3}{10}$,
∵用分層抽樣的方法從該校高中三個(gè)年級(jí)的學(xué)生中抽取容量為50的樣本,
∴要從高二抽取$\frac{3}{10}$×50=15.
故選:A.

點(diǎn)評(píng) 本題考查分層抽樣方法,本題解題的關(guān)鍵是看出三個(gè)年級(jí)中各個(gè)年級(jí)所占的比例,這就是在抽樣過程中被抽到的概率,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.命題“?x∈(1,+∞),都有x2-lnx>$\frac{a}{x}$成立”為真命題,則實(shí)數(shù)a的取值范圍是(  )
A.(-∞,1]B.(-∞,1)C.[1,+∞)D.(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知函數(shù)f(x)=sinx+2cos2$\frac{x}{2}$-1,g(x)=$\sqrt{2}$sin2x,則下列結(jié)論正確的是( 。
A.把函數(shù)f(x)圖象上各點(diǎn)的橫坐標(biāo)縮短到原來的一半(縱坐標(biāo)不變),再向右平移$\frac{π}{4}$個(gè)單位長度,可得到函數(shù)g(x)的圖象
B.兩個(gè)函數(shù)的圖象均關(guān)于直線x-=-$\frac{π}{4}$對(duì)稱
C.兩個(gè)函數(shù)在區(qū)間(-$\frac{π}{4}$,$\frac{π}{4}$)上都是單調(diào)遞增函數(shù)
D.函數(shù)y=g(x)在[0,2π]上只有4個(gè)零點(diǎn)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知集合$A=\left\{{x\left|{{2^x}>\frac{1}{2}}\right.}\right\}$,B={x|x-1>0},則A∩(∁RB)={x|-1<x≤1}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.在平面直角坐標(biāo)系xOy中,已知橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的離心率為$\frac{{\sqrt{2}}}{2}$,點(diǎn)(2,1)在橢圓C上.
(1)求橢圓C的方程;
(2)設(shè)直線l與圓O:x2+y2=2相切,與橢圓C相交于P,Q兩點(diǎn).
①若直線l過橢圓C的右焦點(diǎn)F,求△OPQ的面積;
②求證:OP⊥OQ.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.函數(shù)f(x)=sin(ωx+φ)(x∈R,ω>0,|φ|<$\frac{π}{2}$)的部分圖象如圖所示,則函數(shù)f(x)的解析式為( 。
A.f(x)=sin(2x-$\frac{π}{4}$)B.f(x)=sin(2x+$\frac{π}{4}$)C.f(x)=sin(4x+$\frac{π}{4}$)D.f(x)=sin(4x-$\frac{π}{4}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知函數(shù)f(x)=x2+blnx和$g(x)=\frac{x-10}{x-4}$的圖象在x=5處的切線互相平行.
(1)求b值;
(2)求f(x)的極值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知橢圓C的中心在坐標(biāo)原點(diǎn),對(duì)稱軸為坐標(biāo)軸,其一個(gè)焦點(diǎn)與拋物線y2=8x的焦點(diǎn)重合;過點(diǎn)M(1,1)且斜率為$-\frac{1}{2}$的直線交橢圓C于A、B兩點(diǎn),且M是線段AB的中點(diǎn),則橢圓C的方程為$\frac{{x}^{2}}{8}$+$\frac{{y}^{2}}{4}$=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.若復(fù)數(shù)z對(duì)應(yīng)的點(diǎn)在直線y=2x上,且|z|=$\sqrt{5}$,則復(fù)數(shù)z=1+2i或-1-2i.

查看答案和解析>>

同步練習(xí)冊(cè)答案