|
|
已知在四棱錐P-ABCD中,底面ABCD是邊長為4的正方形,△PAD是正三角形,平面PAD⊥平面ABCD,E,F(xiàn),G分別是PD,PC,BC的中點.
(Ⅰ)求平面EFG⊥平面PAD;
(Ⅱ)若M是線段CD上一點,求三棱錐M-EFG的體積.
|
|
|
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:課標(biāo)綜合版 專題復(fù)習(xí)
題型:
|
|
定義:已知函數(shù)f(x)與g(x),若存在一條直線y=kx+b,使得對公共定義域內(nèi)的任意實數(shù)均滿足g(x)≤f(x)≤kx+b恒成立,其中等號在公共點處成立,則稱直線y=kx+b為曲線f(x)與g(x)的“左同旁切線”.已知
(Ⅰ)證明:直線y=x-l是f(x)與g(x)的“左同旁切線”;
(Ⅱ)設(shè)P(x1,f(x1)),Q(x2,f(x2))是函數(shù)f(x)圖象上任意兩點,且0<x1<x2,若存在實數(shù)x3>0,使得.請結(jié)合(I)中的結(jié)論證明:x1<x3<x2.
|
|
|
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:課標(biāo)綜合版 專題復(fù)習(xí)
題型:
|
|
已知函數(shù)f(x)滿足f(1)=1且f(x+1)=2f(x),則f(1)+f(2)+…+f(10)=________.
|
|
|
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:課標(biāo)綜合版 專題復(fù)習(xí)
題型:
|
|
一個幾何體的三視圖如圖所示,則該幾何體的體積為
|
[ ] |
A. |
2
|
B. |
1
|
C. |
|
D. |
|
|
|
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:課標(biāo)綜合版 專題復(fù)習(xí)
題型:
|
|
已知函數(shù)與g(x)=log2x則函數(shù)h(x)=f(x)-g(x)的零點個數(shù)是________.
|
|
|
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:課標(biāo)綜合版 專題復(fù)習(xí)
題型:
|
|
已知f(x)=|x+1|+|x-1|,不等式f(x)<4的解集為M.
(1)求M;
(2)當(dāng)a,b∈M時,證明:2|a+b|<|4+ab|.
|
|
|
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:課標(biāo)綜合版 專題復(fù)習(xí)
題型:
|
|
若實數(shù)x,y滿足條件則|x-3y|的最大值為
|
[ ] |
A. |
6
|
B. |
5
|
C. |
4
|
D. |
3
|
|
|
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:課標(biāo)綜合版 專題復(fù)習(xí)
題型:
|
|
已知i為虛數(shù)單位,則復(fù)數(shù)
|
[ ] |
A. |
-1
|
B. |
1
|
C. |
i
|
D. |
-i
|
|
|
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:課標(biāo)綜合版 專題復(fù)習(xí)
題型:
|
|
已知橢圓E1:+=1,E2:+=1(a>b>0).E1與E2有相同的離心率,過點F(-,0)的直線l與E1,E2依次交于A,C,D,B四點(如圖).當(dāng)直線l過E2的上頂點時,直線l的傾斜角為.
(1)求橢圓E2的方程;
(2)求證:|AC|=|DB|;
(3)若|AC|=1,求直線l的方程.
|
|
|
查看答案和解析>>