【題目】在平面直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為,其中.

(Ⅰ)寫(xiě)出直線的普通方程和曲線的直角坐標(biāo)方程;

(Ⅱ)在平面直角坐標(biāo)系中,設(shè)直線與曲線相交于,兩點(diǎn).若點(diǎn)恰為線段的三等分點(diǎn),求的值.

【答案】(Ⅰ);(Ⅱ).

【解析】

(Ⅰ)利用消參法消去參數(shù),即可將直線的參數(shù)方程轉(zhuǎn)化為普通方程,利用互化公式,,將曲線的極坐標(biāo)方程轉(zhuǎn)化為直角坐標(biāo)方程;

(Ⅱ)把直線的參數(shù)方程代入曲線的直角坐標(biāo)方程,得出關(guān)于的一元二次方程,根據(jù)韋達(dá)定理得出,再利用直線參數(shù)方程中的參數(shù)的幾何意義,即可求出的值.

解:(Ⅰ)由于直線的參數(shù)方程為為參數(shù)),

消去參數(shù),得直線的普通方程為,

,

得曲線的直角坐標(biāo)方程為.

(Ⅱ)將直線的參數(shù)方程代入曲線的直角坐標(biāo)方程,

并整理,得,

設(shè),是方程的兩個(gè)根,則有,

,

由于點(diǎn)恰為線段的三等分點(diǎn),

所以不妨設(shè),

解得:,符合條件,

.的值為4.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),,若關(guān)于x的方程3個(gè)不同的實(shí)數(shù)根,則實(shí)數(shù)a的取值集合為________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為,其中.

(Ⅰ)寫(xiě)出直線的普通方程和曲線的直角坐標(biāo)方程;

(Ⅱ)在平面直角坐標(biāo)系中,設(shè)直線與曲線相交于,兩點(diǎn).若點(diǎn)恰為線段的三等分點(diǎn),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在三棱柱中,平面,,點(diǎn)分別在棱和棱上,且為棱的中點(diǎn).


(Ⅰ)求證:;

(Ⅱ)求二面角的正弦值;

(Ⅲ)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列的首項(xiàng)a1=1,前n項(xiàng)和為Sn.設(shè)λk是常數(shù),若對(duì)一切正整數(shù)n,均有成立,則稱此數(shù)列為“λ~k數(shù)列.

1)若等差數(shù)列“λ~1”數(shù)列,求λ的值;

2)若數(shù)列數(shù)列,且an0,求數(shù)列的通項(xiàng)公式;

3)對(duì)于給定的λ,是否存在三個(gè)不同的數(shù)列“λ~3”數(shù)列,且an≥0?若存在,求λ的取值范圍;若不存在,說(shuō)明理由,

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(本小題滿分12)已知圓,圓,動(dòng)圓與圓外切并且與圓內(nèi)切,圓心的軌跡為曲線

(Ⅰ)求的方程;

(Ⅱ)是與圓,圓都相切的一條直線,與曲線交于,兩點(diǎn),當(dāng)圓的半徑最長(zhǎng)時(shí),求

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】農(nóng)歷五月初五是端午節(jié),民間有吃粽子的習(xí)慣,粽子又稱粽籺,俗稱粽子,古稱角黍,是端午節(jié)大家都會(huì)品嘗的食品,傳說(shuō)這是為了紀(jì)念戰(zhàn)國(guó)時(shí)期楚國(guó)大臣、愛(ài)國(guó)主義詩(shī)人屈原.如圖,平行四邊形形狀的紙片是由六個(gè)邊長(zhǎng)為1的正三角形構(gòu)成的,將它沿虛線折起來(lái),可以得到如圖所示粽子形狀的六面體,則該六面體的體積為____;若該六面體內(nèi)有一球,則該球體積的最大值為____

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】洛書(shū),古稱龜書(shū),是陰陽(yáng)五行術(shù)數(shù)之源,被世界公認(rèn)為組合數(shù)學(xué)的鼻祖,它是中華民族對(duì)人類(lèi)的偉大貢獻(xiàn)之一.在古代傳說(shuō)中有神龜出于洛水,其甲殼上有圖1以五居中,五方白圈皆陽(yáng)數(shù),四隅黑點(diǎn)為陰數(shù),這就是最早的三階幻方,按照上述說(shuō)法,將19這九個(gè)數(shù)字,填在如圖2所示的九宮格里,九宮格的中間填5,四個(gè)角填偶數(shù),其余位置填奇數(shù).則每一橫行、每一豎列以及兩條對(duì)角線上3個(gè)數(shù)字的和都等于15的概率是(

1 2

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了響應(yīng)綠色出行,某市推出了新能源分時(shí)租賃汽車(chē),并對(duì)該市市民使用新能源租賃汽車(chē)的態(tài)度進(jìn)行調(diào)查,得到有關(guān)數(shù)據(jù)如下表1

1

愿意使用新能源租賃汽車(chē)

不愿意使用新能源租賃汽車(chē)

總計(jì)

男性

100

300

女性

400

總計(jì)

400

其中一款新能源分時(shí)租賃汽車(chē)的每次租車(chē)費(fèi)用由行駛里程和用車(chē)時(shí)間兩部分構(gòu)成:行駛里程按1/公里計(jì)費(fèi);用車(chē)時(shí)間不超過(guò)30分鐘時(shí),按0.15/分鐘計(jì)費(fèi);超過(guò)30分鐘時(shí),超出部分按0.20/分鐘計(jì)費(fèi).已知張先生從家到上班地點(diǎn)15公里,每天上班租用該款汽車(chē)一次,每次的用車(chē)時(shí)間均在20~60分鐘之間,由于堵車(chē)紅綠燈等因素,每次的用車(chē)時(shí)間(分鐘)是一個(gè)隨機(jī)變量.張先生記錄了100次的上班用車(chē)時(shí)間,并統(tǒng)計(jì)出在不同時(shí)間段內(nèi)的頻數(shù)如下表2

2

時(shí)間(分鐘)

2030]

30,40]

4050]

50,60]

頻數(shù)

20

40

30

10

1)請(qǐng)補(bǔ)填表1中的空缺數(shù)據(jù),并判斷是否有99.5%的把握認(rèn)為該市市民對(duì)新能源租賃汽車(chē)的使用態(tài)度與性別有關(guān);

2)根據(jù)表2中的數(shù)據(jù),將各時(shí)間段發(fā)生的頻率視為概率,以各時(shí)間段的區(qū)間中點(diǎn)值代表該時(shí)間段的取值,試估計(jì)張先生租用一次該款汽車(chē)上班的平均用車(chē)時(shí)間;

3)若張先生使用滴滴打車(chē)上班,則需要車(chē)費(fèi)27元,試問(wèn):張先生上班使用滴滴打車(chē)和租用該款汽車(chē),哪一種更合算?

附:

0.10

0.05

0.025

0.010

0.005

0.001

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

同步練習(xí)冊(cè)答案