【題目】洛書,古稱龜書,是陰陽五行術(shù)數(shù)之源,被世界公認(rèn)為組合數(shù)學(xué)的鼻祖,它是中華民族對人類的偉大貢獻(xiàn)之一.在古代傳說中有神龜出于洛水,其甲殼上有圖1以五居中,五方白圈皆陽數(shù),四隅黑點(diǎn)為陰數(shù),這就是最早的三階幻方,按照上述說法,將19這九個數(shù)字,填在如圖2所示的九宮格里,九宮格的中間填5,四個角填偶數(shù),其余位置填奇數(shù).則每一橫行、每一豎列以及兩條對角線上3個數(shù)字的和都等于15的概率是(

1 2

A.B.C.D.

【答案】C

【解析】

先求出滿足題意的所有排法的總數(shù),再求出所有排法的總數(shù),再由古典概型的概率公式求解即可.

先排左上角的數(shù)字,可以排2,4,6,8,有4種排法,如果固定了左上角的偶數(shù),如圖,假設(shè)是2,則有兩種排法,當(dāng)四個角的數(shù)字固定之后,其他空位的數(shù)字隨其固定,所以共有種排法滿足題意.

要求所有的結(jié)果,可以先排四個角上的偶數(shù),有種結(jié)果,再排其他四個空位,有種結(jié)果,共有.

由古典概型的概率公式得.

故選:C

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的右焦點(diǎn)為,點(diǎn)在橢圓上,點(diǎn)在圓上,且圓上的所有點(diǎn)均在橢圓外,若的最小值為,且橢圓的長軸長恰與圓的直徑長相等,則下列說法正確的是(

A.橢圓的焦距為B.橢圓的短軸長為

C.的最小值為D.過點(diǎn)的圓的切線斜率為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為,其中.

(Ⅰ)寫出直線的普通方程和曲線的直角坐標(biāo)方程;

(Ⅱ)在平面直角坐標(biāo)系中,設(shè)直線與曲線相交于,兩點(diǎn).若點(diǎn)恰為線段的三等分點(diǎn),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)是定義在的偶函數(shù),且.當(dāng)時(shí),,若方程300個不同的實(shí)數(shù)根,則實(shí)數(shù)m的取值范圍為(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】共享單車又稱為小黃車,近年來逐漸走進(jìn)了人們的生活,也成為減少空氣污染,緩解城市交通壓力的一種重要手段.為調(diào)查某地區(qū)居民對共享單車的使用情況,從該地區(qū)居民中按年齡用隨機(jī)抽樣的方式隨機(jī)抽取了人進(jìn)行問卷調(diào)查,得到這人對共享單車的評價(jià)得分統(tǒng)計(jì)填入莖葉圖,如下所示(滿分分):

1)找出居民問卷得分的眾數(shù)和中位數(shù);

2)請計(jì)算這位居民問卷的平均得分;

3)若在成績?yōu)?/span>分的居民中隨機(jī)抽取人,求恰有人成績超過分的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校課外興趣小組利用假期到植物園開展社會實(shí)踐活動,研究某種植物生長情況與溫度的關(guān)系.現(xiàn)收集了該種植物月生長量ycm)與月平均氣溫x(℃)的8組數(shù)據(jù),并制成如圖所示的散點(diǎn)圖.

根據(jù)收集到的數(shù)據(jù),計(jì)算得到如下值:

18

12.325

224.04

235.96

1)求出y關(guān)于x的線性回歸方程(最終結(jié)果的系數(shù)精確到0.01),并求溫度為28℃時(shí)月生長量y的預(yù)報(bào)值;

2)根據(jù)y關(guān)于x的回歸方程,得到殘差圖如圖所示,分析該回歸方程的擬合效果.

附:對于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二乘估計(jì)分別為,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知橢圓,點(diǎn)是拋物線的焦點(diǎn),過點(diǎn)F作直線交拋物線于MN兩點(diǎn),延長,分別交橢圓于A,B兩點(diǎn),記的面積分別是,.

(1)求的值及拋物線的準(zhǔn)線方程;

(2)求的最小值及此時(shí)直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校高二年級進(jìn)行選課走班,已知語文、數(shù)學(xué)、英語是必選學(xué)科,另外需從物理、化學(xué)、生物、政治、歷史、地理6門學(xué)科中任選3門進(jìn)行學(xué)習(xí). 現(xiàn)有甲、乙、丙三人,若同學(xué)甲必選物理,則下列結(jié)論正確的是(

A.甲的不同的選法種數(shù)為10

B.甲、乙、丙三人至少一人選化學(xué)與全選化學(xué)是對立事件

C.乙同學(xué)在選物理的條件下選化學(xué)的概率是

D.乙、丙兩名同學(xué)都選物理的概率是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校擬從甲、乙兩名同學(xué)中選一人參加疫情知識問答競賽,于是抽取了甲、乙兩人最近同時(shí)參加校內(nèi)競賽的十次成績,將統(tǒng)計(jì)情況繪制成如圖所示的折線圖.根據(jù)該折線圖,下面結(jié)論正確的是(

A.甲、乙成績的中位數(shù)均為7

B.乙的成績的平均分為6.8

C.甲從第四次到第六次成績的下降速率要大于乙從第四次到第五次的下降速率

D.甲的成績的方差小于乙的成績的方差

查看答案和解析>>

同步練習(xí)冊答案