【題目】已知梯形中,,,是的中點(diǎn).,、分別是、上的動(dòng)點(diǎn),且,設(shè)(),沿將梯形翻折,使平面平面,如圖.
(1)當(dāng)時(shí),求證:;
(2)若以、、、為頂點(diǎn)的三棱錐的體積記為,求的最大值;
(3)當(dāng)取得最大值時(shí),求二面角的余弦值.
【答案】(1)證明見解析;(2);(3)
【解析】
(1)如圖所示:于,連接,證明,得到平面,得到證明.
(2)計(jì)算得到,根據(jù)二次函數(shù)性質(zhì)得到答案.
(3)如圖所示:以為軸建立空間直角坐標(biāo)系,平面的一個(gè)法向量為,平面的一個(gè)法向量為,計(jì)算向量夾角得到答案.
(1)如圖所示:于,連接,
平面平面,,故平面,平面,
故,易知為正方形,故,,
故平面,平面,故.
(2),
故.
(3)如圖所示:以為軸建立空間直角坐標(biāo)系,
則,,,,
易知平面的一個(gè)法向量為,
設(shè)平面的一個(gè)法向量為,則,即,
取,得到,故,
觀察知二面角的平面角為鈍角,故余弦值為.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】商店出售一種成本為40元/千克的產(chǎn)品,據(jù)市場分析,若按50元/千克銷售,一個(gè)月能售出500千克,銷售單價(jià)每漲1元,月銷售量就減少10千克,設(shè)銷售單價(jià)為元/千克,月銷售利潤為元.
(1)當(dāng)銷售單價(jià)定為55元/千克時(shí),計(jì)算銷售量和月銷售利潤;
(2)求與之間的函數(shù)關(guān)系式,并說明當(dāng)銷售單價(jià)應(yīng)定為多少時(shí),月銷售利潤最大?最大利潤是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè),.已知函數(shù),.
(Ⅰ)求的單調(diào)區(qū)間;
(Ⅱ)已知函數(shù)和的圖象在公共點(diǎn)(x0,y0)處有相同的切線,
(i)求證:在處的導(dǎo)數(shù)等于0;
(ii)若關(guān)于x的不等式在區(qū)間上恒成立,求b的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某同學(xué)大學(xué)畢業(yè)后,決定利用所學(xué)專業(yè)進(jìn)行自主創(chuàng)業(yè),經(jīng)過市場調(diào)查,生產(chǎn)一小型電子產(chǎn)品需投入固定成本2萬元,每生產(chǎn)萬件,需另投入流動(dòng)成本萬元,當(dāng)年產(chǎn)量小于萬件時(shí),(萬元);當(dāng)年產(chǎn)量不小于7萬件時(shí),(萬元).已知每件產(chǎn)品售價(jià)為6元,假若該同學(xué)生產(chǎn)的商品當(dāng)年能全部售完.
(1)寫出年利潤(萬年)關(guān)于年產(chǎn)量(萬件)的函數(shù)解析式;(注:年利潤=年銷售收入-固定成本-流動(dòng)成本)
(2)當(dāng)年產(chǎn)量約為多少萬件時(shí),該同學(xué)的這一產(chǎn)品所獲年利潤最大?最大年利潤是多少?
(取).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一個(gè)地區(qū)共有5個(gè)鄉(xiāng)鎮(zhèn),共30萬人,其人口比例為3∶2∶5∶2∶3,從這30萬人中抽取一個(gè)300人的樣本,分析某種疾病的發(fā)病率.已知這種疾病與不同的地理位置及水土有關(guān),則應(yīng)采取什么樣的抽樣方法?并寫出具體過程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某大型企業(yè)針對改善員工福利的,,三種方案進(jìn)行了問卷調(diào)查,調(diào)查結(jié)果如下:
支持方案 | 支持方案 | 支持方案 | |
35歲以下的人數(shù) | 200 | 400 | 800 |
35歲及以上的人數(shù) | 100 | 100 | 400 |
(1)從所有參與調(diào)查的人中,用分層隨機(jī)抽樣的方法抽取人,已知從支持方案的人中抽取了6人,求的值.
(2)從支持方案的人中,用分層隨機(jī)抽樣的方法抽取5人,這5人中年齡在35歲及以上的人數(shù)是多少?年齡在35歲以下的人數(shù)是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在如圖所示的幾何體中,AB⊥平面ACD,DE⊥平面ACD,△ACD為等邊三角形,AD=DE=2AB,F為CD的中點(diǎn).
(1)求證:AF∥平面BCE;
(2)求證:平面BCE⊥平面CDE.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓,點(diǎn)為圓上任意一點(diǎn),點(diǎn),線段的中點(diǎn)為,點(diǎn)的軌跡為曲線.
(1)求點(diǎn)的軌跡的方程;
(2)直線與圓相交于兩點(diǎn),求的最小值及此時(shí)直線的方程;
(3)求曲線與的公共弦長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),.
(1)當(dāng)時(shí),求曲線在點(diǎn)處的切線方程;
(2)令,討論的單調(diào)性.
(3)當(dāng)時(shí),恒成立,求實(shí)數(shù)的取值范圍.( 為自然對數(shù)的底數(shù), …).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com