如圖,已知四棱錐,,,
平面,∥,為的中點(diǎn).
(1)求證:∥平面;
(2)求證:平面平面;
(3)求四棱錐的體積.
(1)詳見解析;(2)詳見解析;(3)
解析試題分析:(1)線面平行判定定理,關(guān)鍵找線線平行.本題利用平行四邊形找平行,取中點(diǎn),則易得;所以四邊形為平行四邊形,即得應(yīng)用定理證明時(shí),需寫出定理所需條件.(2)證明面面垂直,關(guān)鍵證線面垂直.分析條件知,須證平面,由(1)知,只需證平面.因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/0b/5/1vdpq2.png" style="vertical-align:middle;" />為等邊三角形,為的中點(diǎn) ,所以;又可由平面得,這樣就可由線面垂直判定定理得到平面.(3)求三棱錐體積,關(guān)鍵找出高線或平面的垂線.利用面面垂直可找出面的垂線.因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/13/b/1qjzp2.png" style="vertical-align:middle;" />平面,所以面平面,過A作兩平面交線的垂線,則有平面.因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/0b/5/1vdpq2.png" style="vertical-align:middle;" />為等邊三角形,所以為中點(diǎn).
試題解析:
解:(1)取中點(diǎn),連結(jié),,
分別是,的中點(diǎn),
∥,且.
∥, 2分
與平行且相等.
四邊形為平行四邊形,
∥. 3分
又平面,平面.
∥平面. 4分
(2)為等邊三角形,為的中點(diǎn),
. 5分
又平面,平面.
,  
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知直四棱柱的底面為正方形,,為棱的中點(diǎn).
(1)求證:;
(2)設(shè)為中點(diǎn),為棱上一點(diǎn),且,求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,E是以AB為直徑的半圓弧上異于A,B的點(diǎn),矩形ABCD所在平面垂直于該半圓所在的平面,且AB=2AD=2。
(1).求證:EA⊥EC;
(2).設(shè)平面ECD與半圓弧的另一個(gè)交點(diǎn)為F。
①求證:EF//AB;
②若EF=1,求三棱錐E—ADF的體積
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知多面體ABCDFE中, 四邊形ABCD為矩形,AB∥EF,AF⊥BF,平面ABEF⊥平面ABCD, O、M分別為AB、FC的中點(diǎn),且AB = 2,AD =" EF" = 1.
(1)求證:AF⊥平面FBC;
(2)求證:OM∥平面DAF;
(3)設(shè)平面CBF將幾何體EFABCD分成的兩個(gè)錐體的體積分別為VF-ABCD,VF-CBE,求VF-ABCD∶VF-CBE的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在四棱錐P-ABCD中,ABCD為平行四邊形,平面PAB,,.M為PB的中點(diǎn).
(1)求證:PD//平面AMC;
(2)求銳二面角B-AC-M的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在中,,斜邊.可以通過 以直線為軸旋轉(zhuǎn)得到,且二面角是直二面角.動(dòng)點(diǎn)在斜邊上.
(1)求證:平面平面;
(2)求與平面所成角的最大角的正切值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,四棱錐中,平面,底面為矩形,為的中點(diǎn).
(1)求證:;
(2)在線段上是否存在一點(diǎn),使得平面?若存在,求出的長(zhǎng);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,三棱錐A-BCD中,∠BCD=90°,BC=CD=1,AB⊥平面BCD,∠ADB=60°,E,F(xiàn)分別是AC,AD上的動(dòng)點(diǎn),且=λ(0<λ<1).
(1)求證:不論λ為何值,總有平面BEF⊥平面ABC;
(2)當(dāng)λ為何值時(shí),平面BEF⊥平面ACD..
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在空間四邊形中,分別是和上的點(diǎn),分別是和上的點(diǎn),且,求證:三條直線相交于同一點(diǎn).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com