【題目】在直角坐標(biāo)系xOy中,直線l的參數(shù)方程為(其中t為參數(shù)).以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸非負(fù)半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為

(1)求lC的直角坐標(biāo)方程.

(2)設(shè)點(diǎn),直線l交曲線CA,B兩點(diǎn),求的值.

【答案】1的直角坐標(biāo)方程為;曲線的直角坐標(biāo)方程為;(2

【解析】

1)將直線的參數(shù)方程消去可得的直角坐標(biāo)方程,由,得,結(jié)合極坐標(biāo)方程與直角坐標(biāo)方程間的關(guān)系,轉(zhuǎn)化即可.

2)將直線的參數(shù)方程,代入C的直角坐標(biāo)方程中,得到關(guān)于的一元二次方程,結(jié)合根與系數(shù)關(guān)系,及,可求出答案.

(1)直線的參數(shù)方程為(其中為參數(shù)),

消去可得的直角坐標(biāo)方程為;

,得,

則曲線的直角坐標(biāo)方程為.

(2)將直線的參數(shù)方程,代入,

,設(shè)A,B對應(yīng)的參數(shù)分別為,,

,

所以

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱錐中, , , 平面平面, 、分別為、中點(diǎn).

1)求證: ;

2)求二面角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形中,點(diǎn)為邊上的點(diǎn),點(diǎn)為邊的中點(diǎn),,現(xiàn)將沿邊折至位置,且平面平面.

(1) 求證:平面平面

(2) 求二面角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,,是等邊三角形,

1)求證:;

2)求直線與平面所成的角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2019年春節(jié)假期,旅游過年持續(xù)火爆.特別是:東北雪鄉(xiāng)、夢回大唐、江南水鄉(xiāng)、三亞之行這四條路線受到廣大人民的熱播.現(xiàn)有2個家庭準(zhǔn)備去這四個地方旅游,假設(shè)每個家庭均從這四條路線中任意選取一條路線去旅源,則兩個家庭選擇同一路線的概率為(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系xOy中,直線l的參數(shù)方程為(其中t為參數(shù)).以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸非負(fù)半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為

(1)求lC的直角坐標(biāo)方程.

(2)設(shè)點(diǎn),直線l交曲線CA,B兩點(diǎn),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn)的坐標(biāo)分別為.三角形的兩條邊,所在直線的斜率之積是.

1)求點(diǎn)的軌跡方程;

2)設(shè)直線方程為,直線方程為,直線,點(diǎn)關(guān)于軸對稱,直線軸相交于點(diǎn).的面積為,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,平面 平面,, .

(1)證明

(2)設(shè)點(diǎn)在線段上,且,若的面積為,求四棱錐的體積

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】《周髀算經(jīng)》中給出了勾股定理的絕妙證明.如圖是趙爽弦圖及注文.弦圖是一個以勾股形之弦為邊的正方形,其面積稱為弦實(shí).圖中包含四個全等的勾股形及一個小正方形,分別涂成朱色及黃色,其面積稱為朱實(shí)、黃實(shí).×+(股-勾)2=4×朱實(shí)+黃實(shí)=弦實(shí),化簡得勾2+2=2.若圖中勾股形的勾股比為,向弦圖內(nèi)隨機(jī)拋擲100顆圖釘(大小忽略不計),則落在黃色圖形內(nèi)的圖釘顆數(shù)大約為( )(參考數(shù)據(jù):,

A.2B.4C.6D.8

查看答案和解析>>

同步練習(xí)冊答案