【題目】2019年春節(jié)假期,旅游過年持續(xù)火爆.特別是:東北雪鄉(xiāng)、夢回大唐、江南水鄉(xiāng)、三亞之行這四條路線受到廣大人民的熱播.現(xiàn)有2個家庭準(zhǔn)備去這四個地方旅游,假設(shè)每個家庭均從這四條路線中任意選取一條路線去旅源,則兩個家庭選擇同一路線的概率為(

A.B.C.D.

【答案】C

【解析】

分別設(shè)“東北雪鄉(xiāng)、夢回大唐、江南水鄉(xiāng)、三亞之行”為A,B,CD,可列出兩個家庭的選擇的所有情況,及兩個家庭選擇同路線的情況,結(jié)合古典概型的概率公式可求出答案.

分別設(shè)“東北雪鄉(xiāng)、夢回大唐、江南水鄉(xiāng)、三亞之行”為A,B,C,D.

則兩個家庭的選擇有“AAAB,ACAD,BA,BB,BC,BDCA,CB,CC,CD,DADB,DCDD”共16種情況,

其中滿足兩個家庭選擇同路線的情況有“AA,BBCC,DD”,共4種,

所以兩個家庭選擇同一路線的概率為

故選:C.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某鮮花店根據(jù)以往某品種鮮花的銷售記錄,繪制出日銷售量的頻率分布直方圖,如圖所示.將日銷售量落入各組區(qū)間的頻率視為概率,且假設(shè)每天的銷售量相互獨立.

(1)求在未來的連續(xù)4天中,有2天的日銷售量低于100枝且另外2天不低于150枝的概率;

(2)用表示在未來4天里日銷售量不低于100枝的天數(shù),求隨機變量的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左焦點為,是橢圓上關(guān)于原點對稱的兩個動點,當(dāng)點的坐標(biāo)為時,的周長恰為

(1)求橢圓的方程;

(2)過點作直線交橢圓于兩點,且 ,求面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知四邊形ABCD是邊長為2的菱形,∠ABC=60°,平面AEFC⊥平面ABCDEFAC,AE=AB,AC=2EF.

1)求證:平面BED⊥平面AEFC

2)若四邊形AEFC為直角梯形,且EAAC,求二面角B-FC-D的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(導(dǎo)學(xué)號:05856310)

已知函數(shù)f(x)=x+ln x(a∈R).

(Ⅰ)當(dāng)a=2時, 求函數(shù)f(x)的單調(diào)區(qū)間;

(Ⅱ)若關(guān)于x的函數(shù)g(x)=f(x)+ln x+2e(e為自然對數(shù)的底數(shù))有且只有一個零點,求實數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系xOy中,直線l的參數(shù)方程為(其中t為參數(shù)).以坐標(biāo)原點O為極點,x軸非負(fù)半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為

(1)求lC的直角坐標(biāo)方程.

(2)設(shè)點,直線l交曲線CA,B兩點,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知,,),的圖象上相鄰兩條對稱軸之間的距離為

1)求函數(shù)的單調(diào)遞增區(qū)間;

2)若的內(nèi)角,的對邊分別為,,且,,求,的值及邊上的中線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在平面直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù)).以原點為極點,軸的正半軸為極軸建立極坐標(biāo)系,且曲線的極坐標(biāo)方程為.

(1)寫出直線的普通方程與曲線的直角坐標(biāo)方程;

(2)設(shè)直線上的定點在曲線外且其到上的點的最短距離為,試求點的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),.

(1)討論的單調(diào)性;

(2)定義:對于函數(shù),若存在,使成立,則稱為函數(shù)的不動點.如果函數(shù)存在不動點,求實數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案