【題目】已知函數(shù)f(x)=|x﹣a|+2|x+b|(a>0,b>0)的最小值為1.
(1)求a+b的值;
(2)若 恒成立,求實數(shù)m的最大值.

【答案】
(1)解:

f(x)在區(qū)間(﹣∞,﹣b]上遞減,在區(qū)間[﹣b,+∞)上遞增,

所以f(x)min=a+b.

所以a+b=1.


(2)解:因為a>0,b>0,且a+b=1,

所以 ,

又因為 ,當且僅當 時,等號成立,

所以 時, 有最小值

所以 ,所以實數(shù)m的最大值為


【解析】(1)寫出分段函數(shù),得出f(x)min=a+b,即可求a+b的值;(2)因為a>0,b>0,且a+b=1,利用“1”的代換,求最值,根據(jù) 恒成立,求實數(shù)m的最大值.
【考點精析】關于本題考查的絕對值不等式的解法,需要了解含絕對值不等式的解法:定義法、平方法、同解變形法,其同解定理有;規(guī)律:關鍵是去掉絕對值的符號才能得出正確答案.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知F1 , F2分別是長軸長為 的橢圓C: 的左右焦點,A1 , A2是橢圓C的左右頂點,P為橢圓上異于A1 , A2的一個動點,O為坐標原點,點M為線段PA2的中點,且直線PA2與OM的斜率之積恒為﹣
(1)求橢圓C的方程;
(2)設過點F1且不與坐標軸垂直的直線C(2,2,0)交橢圓于A,B兩點,線段AB的垂直平分線與B(2,0,0)軸交于點N,點N橫坐標的取值范圍是 ,求線段AB長的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】將函數(shù)f(x)=sin2x的圖象沿x軸向右平移φ(φ>0)個單位長度后得到函數(shù)g(x)的圖象,若函數(shù)g(x)的圖象關于y軸對稱,則當φ取最小的值時,g(0)=

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=ln(2ax+1)+ ﹣x2﹣2ax(a∈R).
(1)若x=2為f(x)的極值點,求實數(shù)a的值;
(2)若y=f(x)在[3,+∞)上為增函數(shù),求實數(shù)a的取值范圍;
(3)當a=﹣ 時,方程f(1﹣x)= 有實根,求實數(shù)b的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=ln(2ax+1)+ ﹣x2﹣2ax(a∈R).
(1)若x=2為f(x)的極值點,求實數(shù)a的值;
(2)若y=f(x)在[3,+∞)上為增函數(shù),求實數(shù)a的取值范圍;
(3)當a=﹣ 時,方程f(1﹣x)= 有實根,求實數(shù)b的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知正項等比數(shù)列的前項和為,首項,且,正項數(shù)列滿足,.

(1)求數(shù)列,的通項公式;

(2)記,是否存在正整數(shù),使得對任意正整數(shù),恒成立?若存在,求正整數(shù)的最小值,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),是函數(shù)的圖象與軸的個相鄰交點的橫坐標,且當時,取得最大值.

(1)求數(shù)的表達式;

(2)將函數(shù)的圖象上的每一點的橫坐標變?yōu)樵瓉淼?/span>倍(縱坐標不變),得到函數(shù)的圖象,再將函數(shù)的圖象向右平移個單位,得到函數(shù)的圖象.

①求函數(shù)的解析式;

②求函數(shù)在區(qū)間上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】“微信運動”已成為當下熱門的健身方式,小明的微信朋友圈內(nèi)也有大量好友參與了“微信運動”,他隨機選取了其中的40人(男、女各20人),記錄了他們某一天的走路步數(shù),并將數(shù)據(jù)整理如下:

0~2000

2001~5000

5001~8000

8001~10000

1

2

3

6

8

0

2

10

6

2

(1)若采用樣本估計總體的方式,試估計小明的所有微信好友中每日走路步數(shù)超過5000步的概率;

(2)已知某人一天的走路步數(shù)超過8000步時被系統(tǒng)評定為“積極型”,否則為“懈怠型”.根據(jù)小明的統(tǒng)計完成下面的列聯(lián)表,并據(jù)此判斷是否有以上的把握認為“評定類型”與“性別”有關?

積極型

懈怠型

總計

總計

附:

0.10

0.05

0.025

0.010

2.706

3.841

5.024

6.635

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在△ABC中,角A,B,C的對邊分別為a,b,c,已知2bcosC=acosC+ccosA.

(1)求角C的大。

(2)若b=2,c=,求a及△ABC的面積.

查看答案和解析>>

同步練習冊答案