【題目】已知直線l的傾斜角為135°,直線l1經(jīng)過點(diǎn)A(3,2),B(a , -1),且l1l垂直,直線l2:2xby+1=0與直線l1平行,則ab等于( )
A.-4
B.-2
C.0
D.2

【答案】B
【解析】由直線l的傾斜角,得l的斜率為-1,l1的斜率為

∵直線l與l1垂直,∴ =1,得a=0.又直線l2的斜率為- ,

∵l1∥l2,∴- =1,得b=-2.∴a+b=-2. 所以答案是:B


【考點(diǎn)精析】利用兩條直線平行與傾斜角、斜率的關(guān)系和兩條直線垂直與傾斜角、斜率的關(guān)系對(duì)題目進(jìn)行判斷即可得到答案,需要熟知兩條直線都有斜率而且不重合,如果它們平行,那么它們的斜率相等;反之,如果它們的斜率相等,那么它們平行;兩條直線都有斜率,如果它們互相垂直,那么它們的斜率互為負(fù)倒數(shù);反之,如果它們的斜率互為負(fù)倒數(shù),那么它們互相垂直.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知ω>0,0<φ<π,直線x= 和x= 是函數(shù)f(x)=sin(ωx+φ)圖象的兩條相鄰的對(duì)稱軸,則
(1)求f(x)的解析式;
(2)設(shè)h(x)=f(x)+

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】求分別滿足下列條件的直線l的方程:
(1)斜率是 ,且與兩坐標(biāo)軸圍成的三角形的面積是6;
(2)經(jīng)過兩點(diǎn)A(1,0)、B(m,1);
(3)經(jīng)過點(diǎn)(4,-3),且在兩坐標(biāo)軸上的截距的絕對(duì)值相等.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=2x3+3x2﹣12x+5. (Ⅰ)求曲線y=f(x)在點(diǎn)(0,5)處的切線方程;
(Ⅱ)求函數(shù)f(x)的極值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列命題中,正確的是( )
A.斜率相等的兩條直線一定平行
B.若兩條不重合的直線l1l2平行,則它們的斜率一定相等
C.直線l1x=1與直線l2x=2不平行
D.直線l1:( -1)xy=2與直線l2x+( +1)y=3平行

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn)A(﹣1,0),B(1,0),直線AM與直線BM相交于點(diǎn)M,直線AM與直線BM的斜率分別記為kAM與kBM , 且kAMkBM=﹣2 (Ⅰ)求點(diǎn)M的軌跡C的方程;
(Ⅱ)過定點(diǎn)F(0,1)作直線PQ與曲線C交于P,Q兩點(diǎn),△OPQ的面積是否存在最大值?若存在,求出△OPQ面積的最大值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在四棱錐 中, 平面 , , ,

(1)求證: 平面
(2)求證:平面 平面
(3)設(shè)點(diǎn) 中點(diǎn),在棱 上是否存在點(diǎn) ,使得 ∥平面 ?說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知等差數(shù)列 的公差 ,它的前 項(xiàng)和為 ,若 ,且 成等比數(shù)列.
(1)求數(shù)列 的通項(xiàng)公式 及前 項(xiàng)和
(2)令 ,求數(shù)列 的前 項(xiàng)和

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某種商品價(jià)格與該商品日需求量之間的幾組對(duì)照數(shù)據(jù)如表:

價(jià)格x(元/kg)

10

15

20

25

30

日需求量y(kg)

11

10

8

6

5


(1)求y關(guān)于x的線性回歸方程;
(2)利用(1)中的回歸方程,當(dāng)價(jià)格x=40元/kg時(shí),日需求量y的預(yù)測(cè)值為多少?
參考公式:線性回歸方程 ,其中

查看答案和解析>>

同步練習(xí)冊(cè)答案